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This overview stresses the equilibrium/non-equilibrium nature of the 
I 

physical principles, as well as the basic properties of the models, used 

to calculate critical misfit and critical thickness in epitaxy. 

Hierdie oors&@&eklemtoon die ewewigs/nie-ewewigs karakter van die 

\2) 
I- 
\ 
rr) 
t3 

.fisiese beginsels, sowel as die basiese eienskappe van die modelle wat 

gebruik word om kritieke wanpas en dikte in epitaksie te bereken. 

t 

In t roduct ion  

The importance of the transition of an epitaxial interface between 

crystals A and B from coherency to incoherency with misfit dislocations 

(MD's) needs no motivation, 

misfit f at the interface. 

discussed by Jesserl and Braun . 

The transition depends primarily on the 
~ 

The general specification of misfit has been 

In the case of rectangular interfacial 2 

8ynmetry we may write 

1 I 

where c = (a+b) when A and B are both thick and c = a or b when A is 

thin.3-5 For crystals with different symmetries, e.g. ( 1  1 1 )  f.c.c./(l i o )  

'.c.c. interfaces, the misfits in two orthogonal dir&tions may be 
I 

, 
, %  'gnificantly different. 6,7 

The following modes of misfit accomnodation (MA) will be considered: 
7 (a) a misfit vernier (MV) when A-B is rigidlike , (b) misfit strain 

I 
I 

crystals homogeneously strained to reduce disregistry, (c) misfit 

dislocations (MD's)~'~ (d) and a misfit strain gradient (MSG) 8 from ~ 

--'a 
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lattice parameter a of A t o  h of B. 

inefficient (IMD), of screw character (SMD) or split up into partials. 

Often two or  m r e  modes of MA are present. 

MD’s may be efficient (EMD), 

If MB’s (7) and MS ( e )  coe&st, the portion ? of f accommodated by KD’s 
5,9,10 satisfies (to first order) for quadratic symmetry the relations 

- - 
f = p i  + Q;, e E le1 , (2) 

where (i) P = Q  - 1  for a thin layer on a thick substrate (ii) P =cosX, Q = 1  

when the MD is inefficient; X heing the inclination of the Burgers vector 

to the interface and (iii) P = I ,  Q = 

with r =ha/%, R % pa/% and ‘e = 1 %  
and a MV may coexist.’ Our main aim 

critical misfit fc when a monolayer 

5,. 

-1 - 1  +r R when A and B are both thin 

. For different symmetries MS, MD’s 

is to report on calculations of 

ML] is subcritical <? =0) and the 

critical thickness hc at which such a system becomes critical (7 f 0). 

C 
We need to define the physical pr&ncSples governing calculations of f 

and hc, clearly. Consider a growing epilayer which started as a coherent 

(7 = O )  ML. The acquisition of MD’s is suhjected to a hierarchy of energy 

barriers U both in creation and motion (Peierls]. 

driven by the free energy gradients (a), aided by thermal energy 

(kTs, Ts = substrate T) and proceeds towards the free energy (A) minimum 

defining the equilibrium, i. e. 

The acquisition is 

- 

min. = A E, (3) 

where E is the energy, 

kTs, U, the deposition rate R 

critical parameters will also depend on the growth mode: island growth, 

ML-by-ML growth and Stranski-Krastanov (islands on top of ML-by%). 

The observed configuration depends on LIA, 

and any waiting time; Furthermore, the 
deP 

11-13 

Almost all theories mode2 the AA and BR interaction in terms of 

continuum elasticity (harmonic appr~ximation)?’~’~ Recently ab initio 
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14 
calculations, using appropriate potentials, have been carried out too, 

The periodic AB field (potential V(x,y)) has been cast either in the 

Volterra model5, which invohes crystal dislocations to acconrmodace f, or 

the Frenkel-Kontorowa (FK) 2-497 model that expresses V(x,yr in term of 

a (truncated) Fourier series. 

advantage of the mathematical simplicity the FK model allows for 

adjusting the AB strength as needed. 

orientations are linked to specific Fourier terns7 as matching of A and B 

wave vectors2 ("atomic row matching"), whereas the magnitude of the 

relevant coefficient poses asan energetic measure of the tendency to the 

realization of the specific epitaxy. 

Whereas the Volterra model has the 

Furthermore, specific epitaxial 

In the FK model the self energy E; of a MD between two thick 
3 epicrystals is given by 

1 
9 c $a + b) 

b 2nX0c 1 - v  I - v  
B = -  'x= a +  

'abp 0 'a 'b 

where p is the MD spacing and the other symbols have evident meanings. 

The Volterra model introduces a I1cut off radius R" such that for an 

epilayer of thickness ha on a thick substrate' the line energy of an PID 

becomes 

Db R lob p/2 when ha > p/2 
TF ' .  E; = -T {l?,n(g) + 1) ;  D = - R = 

when ha Gp/2. ha 
(51 

This expression must be modified when the MD's,are inefficient or partial 

and the Burgers vector b is essentially the c in Eqs. (4). 

large (4) reduces to (5) but with smaller value of R. When the misfit is 

When p becomes 

partly accomnodated by 

2Lla ( 1 +Val 

1 -va E- e = BhaG: = 

MS e the MS energy, vhicb is of the form '*' 
ha;: per unit area, (6) 
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for interfaces with quadratic symmetry, uust be included. 

We need cm'teria defining f, and hc. The criterion for the 

equiiibr7:lr ?!! Zm (or MD density fm) is defined by 4 9 5  

- 
- -  

m for G = Zm , f = f  aE 0 = -  a E  
- t  

ae a7 

using eqs. ( 2 ) - ( 3 ) .  Furthermore, from aE/a f  = 0 we may infer that the 

work done to introduce a MD vanishes, i.e. that 4,597 

- -  - -  
W = JFds = 0, or F = 0 when F constant; e = e m' f = f m ,  (7b) 

where, either F is the net force on a dislocation and ds its displacement, 

or F is an applied force employed to introduce the dislocation and ds the 

displacement of its "point" of action, 

is generated from an existing (threading) dislocation . The conditions 
for critical misfit fc (? =0) at-given h and critical thickness hc at 

The case F = O  applies when a MD 
5 

given f may be written as 599  

- 
4:h,fc ;f =O) = 0 and 4(hc,f;z = 0 ) =  0, 

where $I is one of the functions in eqs- (7). In the FK model the 

transition to incoherency is sharp . This gives credibility to 4 

E-(h,fc;e - = f )  = ED(h,fc;f - = f )  
e 

9,lO 
fC 

as an approximate criterion for fc. This may however overestimate 

and hc by nearly 25%. -~ 
Equilibrium considerations assume that ?lD's are freely available, 

4 

In 

general energy barriers of the form 

U = $bar. Fds; bar Z barrier (101 

exist, where the integration is from hottowto-top of barrier. Typical 
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barriers are the nucleation and Peierls barriers?' l 4  The barrier heights 

are reduced by MS (Peach-Kohler) driving forces F,. 

obtains whe:: the opposing ~GJ line tension F 

A special case 
e 

- 5 is cvercorne by *-; i.e, D e 

- 
F = FD - F- = 0, for e = f 

e 

and MD's generate spontaneously without the aid of thermal energy kTs. 

When U/kTs 9 1 the barriers are completely prohibitive and the system Will 

remain almost indefinitely in a metastable configuration. When U s k T s  

the attainment of equilibrium takes time and the observed configuration 

. may differ significantly from equilibrium. 

Equilibrium calculations o f  cr i t i ca l  misf i t  and thickness 

Consider the application of the equilibrium criteria (7) and 

Frank and van der Merwe did this for a one-1 4 layerlike growth. 

(I-D) FK model in which the AA (harmonic) and AB (sinusoidal) interaction 

strengths were respectively embedded ina force Of constant p and an overall 

amplitude W, 

thickness h as (See eqs. (8)) 

They obtained the (ML) critical misfit f(l) and critical 
C 

C 

f:') = Z/l'rk0 , 2; = nbp(')b/ZW ; n=l for a ML, (12)  

hc = ncb = 8W/~~p(')bf 2, 

where of y(l) and W in (12) and (13) stresses the importance of field 

strengths; fc ( ' 1  - 9% for an average case. 

This calculation neglects strain in the substrate, the normal strain 

The gradient in the overlayer and the lateral Poisson (VI contraction. 

latter is easily taken care of yielding for quadratic symmetry the results 15 
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where pa is now the shear modulus of A. This diminishes f:') from 9% 

to about 72. With different symmetries, as for (11 1 )  f.c.c./(llO) b.c.c. 

the misfits in two ortoyanal directions are Zifferent 2,7,12,13 interfaces 

and a variety of MA modes coexists. 

2-D coherency is extremely rare, whereas I-D coherency follows the same 

pattern as. for quadratic symnetry. 

Also f o r  crystals, other than IfL's, 

The first calculation to allow properly for relaxation in the substrate 

and a strain gradient normal to the interface was done using the parabolic 

(P) model and yielded the exact solution 9 

dx 
= '4.rr(l+vT o XI x+aQ(x,a)J ' Sa, 1 -V 

fc(h) 
2 (I-V)h 

a a =  

- s = shhx x(s2+cs-x-x2)+a(c+s) 2 /  (1-2v) 
2 2  2 @(x,a) = 

x(s -x )+a(s +cs+x-x2)/(1-2v) ' I -  C = coshx 

for fc(h) or equivalently f(h ) in crystals with equal elastic constants. 

With different elastic constants f (h) has the same form but Q is vastly 

more complicated. l o  Matthews' obtained using the Volterra model (eqs. ( 5 )  

C 

C 

and (6)) 

Equation (16) is inaccurate at small thicknesses where the "cut off" 

approximation is poor and the precise AB field strength, which (16) 

ignores, becomes important. 

inefficient and partial MD's. 

- -  
It may be modified though to account for 

Most systems exhibit isZand growth (Volmer-Weber or Stranski- 

Krastanov)!' 

spherical epitaxial island A of radius R on a thick substrate B and 

equilibrium MS's $ and E:. For the critical misfit + - fc , 
This case was first addressed by Cabrera16 assuming a hemi- 
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while also p = 2R+. When )la Ub F.l and ax = a = a it follows, (to 

first order) using the strain energy (log. term) in Eq. (4a) that 
Y 

For given misfit f, Eq. (17)  defines a critical size Rc0 

Recently fc(h) has been calculated for a supertatticegs l o  using the 

exactly solvable parabolic madel in conjunction with the assumption that 

the stack of layers remains plane: 

where a(q) = 2(1-~)h/a and +(x) is a complicated function of elastic 

constants and thicknesses, and r and R are defined in eqs. (2) .  By 

criterion (8) this also defines a critical thickness h - hc. 
layer thicknesses and elastic constants are respectively equal eq, (18) 

simplifies greatly, hc/a varies approximately as f'K; K = I .22  compared 

t o  K = 2  in ( 1 4 )  and K = 1 in (16). 

When the 

When h/a is small ESUP - E / 2  where ED D D 

relates to a single layer on a 

sup - ED' Furthermore f sup 
C 

5 Matthews has calculated fc 

substrate using the (Volterra) 

thick substrate. For thick layers, 

4 fc and h:UP 4hc0 

and hc for a t h i n  epilayer on a thick 

force criterion in (7b) and included the 

line tension uo of a step formed concurrently at the free surface and the 

force yo needed for stacking fault formation: 

Db (I-v cos2a) [ Rn(hc/b) +1] + uo b sina - 
hc - Bbf COS X-yo /cos @ 9 

A being the angle between the slip direction and the direction in the 

interface normal to the line of intersection of the slip plane (S) and 

the interface, a is the angle between the M) and its Burgers vector b 



a 

( app l i cab le  t o  p a r t i a l s )  and 0 i s  the  angle between the  f r e e  su r face  and 

the  normal t o  S. 
5 

MD's -y a l s o  be generated 51 climb. Matthews ca l cu la t ed  k. f o r  t h i s  
C 

case invoking p a r t i a l  MD-'s and obta ined ,  using the  c r i t e r i o n  (7b): 

hc = Bf -y0/b  COS$ 

where the  f signs correspond t o  s u r f a c e s  being crea ted  o r  ann ih i l a t ed  by 

climb and Uo i s  the su r face  f r e e  energy. 

t he  a v a i l a b i l i t y  of po in t  d e f e c t s .  

This mechanism i s  dependent on 

Calculations o f  cr i t ical  parameters (non-equil ibrium) 

We b r i e f l y  consider q u a n t i t i e s  r e l evan t  t o  c r i t i c a l i t y  under non- 

equi l ibr ium condi t ions:  t h e  a c t i v a t i o n  b a r r i e r s  U (eq. (12)) t o  the  

formation of MD's and t h e i r  r educ t ion  by MS, the  nuc lea t ion  energy of MD 

loops,  sur face  (image) and P e i e r l s  b a r r i e r s ,  and the  dynamics of MS r e l i e f .  

Frank and van der Merwe have f i r s t  shown t h a t  i n  t h e  FK model the b a r r i e r  

t o  the  i n j e c t i o n  of a MD a t  t h e  f r e e  end of a coherent monaZayer (ML) i s  

n 

4 

per  atom row, (compare eqs. ( l o ) .  U(') has a maximum value  of 4 W R o / . r r  - 9 W  n 
a t  f=O, diminishes t o  about 2W a t  the  coherency i n s t a b i l i t y  f ( ' ) =  2/7rE0 i n  

eq. (12) and vanishes a t  f ( l )  f o r  a ML o r  hs f o r  a mul t i l aye r  (analogy of 

eq. (13)): 

C 

S 
- .  

whereaf te r  MD's enter  f r e e l y  without  thermal a id .  

W 

11% i f  w e  use  the more a p p r o p r i a t e  ML r e l a t i o n s  i n  eqs. (14). 

I n  meta ls  

0.2 - 0.5 eV. The m i s f i t  f ( l '  is about 14% which is reduced t o  about  
S 
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Continuum theory predic t s17  t h a t  the  nucleation energy of a MD 

loop i n  the absence of Ms i s  about  200 e V  which completely r u l e s  o u t  

the  creat ics  s f  such loops by thermal energy TIcne. The reduct ion of 

u was-also been considered by Dodson14 i n  the  case of Si .  

an a tomis t i c  approach, using modified Tersoff p o t e n t i a l s  and obtained an 

f e 1 1 % .  This i s  s i g n i f i c a n t l y  l a r g e r  than the  continuum pred ic t ion  of 

4% and equals  exac t ly  the 1 1 %  i n  ( 2 3 ) ,  which i s  somewhat fo r tu i tous .  

He employed 
- 

n 

S 

More r ecen t ly  Tsao e t .  a1.I7 have considered the  overcoming of 

PeierZs barriers and measured t h e  MS r e l i e f  i n  metas tab le  SixGe 
1 -x 

s t r a i n e d  layers  grown on (001) G e  s u b s t r a t e s .  They concluded t h a t  

s t r a i n e d  layer  breakdown i s  most d i r e c t l y  c o r r e l a t e d  with ( 1 )  an excess 

(dr iving)  s t r e s s  2(F- - FD)/hb g iven  by 
e 

2&(1 +v) p(1  -v cos2a)  Rn(4h/b] - 
e = f  - - - 

'exc 1 - v  2 d l  - v) 

and ( 2 )  temperature, where a = 60' is t h e  angle  between the  MD l i n e  and 

i t s  Burgers vec tor ,  Whereas u 

the  r e l evan t  metastable  conf igu ra t ion ,  the energy b a r r i e r s  delay t h e  

t r a n s i t i o n  t o  equi l ibr ium. 

observable  when U /p sz 0.024. Since  i n  t h e  d e r i v a t i o n  of u t h e  MD's 

are  generated from threading d i s l o c a t i o n s  t h e  r e l e v a n t  b a r r i e r s  are 

presumably the P e i e r l s '  b a r r i e r s .  

= 0 is s t i l l  v a l i d  f o r  equilibrium, i n  exc 

A t  a temperature of 494'C 

exc exc 

MS re l ief  becomes 

'She excess stress def ines  an excess  

a c t i n g  on t h e  d i s 1 ocat  i on threading the  over 1 ayed '  fo rce  Fexc = 7 hbaexc 1 

xFexc' and when displaced by x reduces t h e  b a r r i e r  U(x) t o  AU(x) = U(x) - 
o r  t o  6U(x) =A(x)L/h f o r  a c r i t i c a l  segment length  L jumping the  b a r r i e r .  

When [ S U I  i s  small enough compared t o  the  thermal energy kT 

frequency increases  t o  the e x t e n t  t h a t  Ms r e l i e f  becomes observable. 

t h e  jump 
m a X  S 
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An interesting case of critical thickness concerns epilayers on 

substrates of finite width. 

g r a d i e n t  (MG) KO accoiinnol:te the misfit f. 

r i g i d  substrate of width 2II along the 1-D misfit directioz, a coherent 

epilayer of the same width and an exponentially decaying strain field 

with distance normal to the interface, They used a quasi-nucleation 

criterion and showed that when II is small in comparison to the thickness 

h, there is an effective thickness he smaller than h that characterizes 

the limit of the strain field, i.e. that he 

when II h. These considerations are qualitatively very significant 

because they point towards a new mechanism of avoiding MD's. 

It makes use of a significant m i s f i t  s t ra in  

Luryi and Suhir8 adopted a 

R when h * 9, and he e h 

18 Recently Lbdson and Tsao investigated dislocation dynamics based on 

a phenomenological model and assuming that (i) initially T '0, (ii) the 

biaxial MS is relaxed by a MD network, (iii) the rate process mechanism 

is the equisition of MD's, (iv> the motion of dislocations is driven by 

a localized stress T~~~ and opposed by energy barriers and (VI 'I can 

be expressed in terms of the residual mismatch f -f(t) - e(h), i(t) being 

the (insufficient) density of MD's and g(hl the equilibrium Ms at 

thickness h. 

introducing a background dislocation density i 
governing equation 

Iloc - - 

Starting with a nearly dislocation free coherent layer and 

the authors obtained the 
0' 

- 
d?(t)/dt = Cp2[f0 - f(t) - Z(h)I2(?(t) + Za),  (25) 

e .  

where C is a constant depending on temperature. 

to give a good description of the data for SiGe alloys on (100) Si 

substrates using as model parameters C -30.1 and T o  = 10 These 

considerations constitute significant progress towards a successful 

dynamical description of strain relief i n  non-equilibrium cases. 

This equation is claimed 

-4 . 



Concluding remarks 

In the past,calculations of critical misfit and thickness had mainly 

been catLlx! out using equilibrium princi?les 

Recent observations have displayed a significant discrepancy between 

theoretical and experimental values, particularly in semiconductors. This 

phenomenon which has been mainly ascribed t o  non-equilibrium effects, has 

become topical recently. 

physical principles of the predictions into perspective. Clearly the 

space allowed is completely inadequate to do justice to this endeavour. 

A more complete overview is in preparation. 

because of their ti3plicity. 

This paper attempts to put the models and 
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Descriptions of Low Energy Misfit Dislocation Structures using the Parabolic 

interact ion Poten t id  
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ABSTRACT 

The need for and development of the parabolic model as a power series 

approximation of the sinusoidal Frenkel-Kontorowa model, used to study low 

energy misfit dislocation (MD) structures in epicrystals, is briefly discussed: Its 

application to monolayers on thick substrates, thickening epilayers. superlattices 

and structural ledges is outlined with special emphasis on critical misfit and 

thickness in coherent to incoherent transitions. The "nucleation" of a MD by 

climb from the free surface is calculated. The critical misfits obtained from (a)  

the continuum (approximation) and exact solutions, using the parabolic model 

and (b) the continuum solutions of the sinusoidal and parabolic models, are 

compared and the differences of the various approaches assessed. 
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1. INTRODUCTluH 

Intercrystalline boundaries play an important role in the physical behavior 

of crystalline systems, e.g. in plasticity and the electrical and optical properties 

of epitaxial films. In the present considerations we iLTe primarily interested in 

the near interface atomic displacements resulting from the competing intralayer 

and interlayer atomic interactions in an epitaxial bicrystal comprizing two 

different crystals [1,2,3]. When the interlayer forces are moderately strong the 

interfacial atoms are in fair registry everywhere except near line defects 

constituting a sequence of misfit dislocations (MDs) which are said to 

accommodate the misfit. One or both crystals may also be homogeneously 

(misfit) strained to eliminate the disregistry completely and accordiiigly 

accommodate the misfit by socalled misfit strain (MS). Because of the 

mathematical complexities involved in a proper quantum mechanical description 

of the competing forces, either ab initio models [4,5], using appropriate 

interatomic potentials, or phenomenological descriptions [ 1,2,3], have been 

employed in predicting interface and near interface atomic configurations. 

Of interest here are the phenomenological models. Except for a few 

anelastic [5] refinements investigators almost invariably assumed that the 

relative intralayer atomic displacements are small enough for the harmonic 

(elastic) approximation to be valid. For simplicity mostly isotropic elasticity is 

usually adopted [1,2,3,7]. 

In modelling the interlayer atomic interaction provision is made for the 

discrete atomic nature of the crystals by expressing the relevant forces its periodic 

functions of the relative displacement (parallel to the interface) of atoms 



opposing each other across the interface. There are two somewhat different 

approaches: (a) the Volterra model [2] which assumes the atomic relative 

displacement to be zero on one side of the dislocation and to be one atomic 

spacing b on the other side and (b) the Frenkel Kontorowa (FK) model [8] (and 

its generalizations and approximations) that expresses the periodic interaction 

potential V in terms of a truncated Fourier series V(x). The truncation is 

justified by the fact that the Fourier coefficients decay rapidly with harmonic 

order [ 9). 

In the original one-dimensional (ZD) model Frenkel and Kontorowa 

expressed the energy of their system as [8] 

E = C n +X(xn+l - xn - a)2 + C n V(X,) (1) 

with 

Equations (1) and (2) model one halfcrystal, simulating a monolayer ( M L ) ,  in  

terms of a linear chain of particles connected by elastic springs (harmonic forces) 

of force constant X and natural length a and the other (a thick, effectively "rigid" 

substrate of atomic spacing b) to be the source of the periodic potential V [I]. Its 

overall amplitude Vo is seen as a measuere of the interlayer interaction. The 

integer n enumerates particles and potential troughs starting from a position of 

(nearest) registry so that b<n = Un represents the displacement of particle n from 
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!rough n. 

The parabolic reproduction of the FK model replaces the sinusoidal - 
relation (1 )  by a sequence of parabolic arcs, for example (10,111 

which are obtained by truncating the Taylor qeries of (2) at quadratic terms. 

Hence the arcs in (2) osculate with the troughs of (1).  If we assume that relation 

(2) is a true representation of the interlayer interaction then (3)  is an 

approximation which is still acceptable [10,12] at U = *b/4 and poor towards the 

boundaries U = *b/2, as may also be inferred from Fig. 1. In semiconductors in 

which the crest of the potential V is believed to be fairly sharp as compared to 

the troughs the approximation (2) is rather inadequate and it has been suggested 

that the parabolic form (3) may be nearer to the truth [13]. 

The simple representation (2) has subsequently been extended to 

two-dimensional (2D) potentials V(x,y) appropriate to 2D interfaces 

characteristic of monolayers (MLs) [1,14], for example, and to linear interfaces 

between thick epicrystal halves [7]. In the latter case it had been conveiiient to 

represent the interaction in terms of an interfacial shear stress pzx(x) (shear force 

per unit area) which, in the parabolic approximation [15], takes the form 

where d is the separation of the atomic planes on either side of the interface, x 

and z are respectively parallel and normal to the interface and p an interfacial 
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shear modulus of n;agi.itude characteristic of the interlayer hieraction strength. 

One may use either Eq. (2) or (3) to derive the equivalent of (4) and obtain by 

comparison the relation 
- - 

where s is the interfacial surface area per atom. In any interface with quadratic 

symmetry s = b2. 

When the crystal halves are different in thickness and/or elastic constants 

the relative normal displacement W of the opposing a t o m  at the interface varies 

along the interface. This induces a normal interfacial force which has been 

modelled [13,15,16], using Hookian relations, as 

where u is a Poisson's ratio for the interface. In terms of an interaction 

potential, ( 6 )  is also parabolic. Whereas in case (4) a nonlinear relation exists at 

I U I = *b/2 when a MD is present, W in Eq. (6) will always be small enough for 

the linear Hookian relation to apply. 

Having described the background of the parabolic model it is now our 

objective to briefly review the use of the parabolic model in describing low energy 

misfit dislocation structures (LEMDSs). Of specific interest is the transition 

from a coherent (C) interface, where the misfit f is fully accommodated by MS e 
= f, to an incoherent (IC) interface with MD density f. When MDs and klS 

coexist [2,13] 
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The C-IC transition is mathematically characterized by a change from f = 0 to 

f #  0. 

The behavior of our system is governed by the law that all natural 

processes carry thermodynamic systems towards equilibrium. The equilibrium 

configuration is determined by minimization of the free energy which, in the case 

of MDs; may be approximated by minimization of mechanical energy E [l-31. 

The solutions thus obtained for the governing equations within the crystals, 

which are normally in the form of partial differential equations, must satisfy 

certain boundary conditions, for example, that the "upper" surface of an epitaxial 

film on a thick substrate is a f r e e  surface. This implies that the forces that act 

on the surface, and [1,3] accordingly the surface values of the corresponding 

calculated stresses, vanish. 

Apart from the suggestion that the parabolic model could be a better 

representation of the interlayer interaction potential in semiconductors [ 131. for 

example, than a low order Fourier truncation, it enters piecewise Iinearly in the 

governing equations making them exactly solvable. Although the need for exact 

solutions was most pressing in the case of thickening epilayers, the model has  

been useful and even indenspensible in other cases. 

2. APPLICATIONS 
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2.1. Monolayers: On+Dimenss'onnl Model 

- - 
Originally the 1D FK model was introduced to simulate the plastic 

behavior of crystals [8]. It was subsequently applied to describe the 

accommodation of misfit in epicrystals, in which misfit exists in one interfacial 

direction only (1,7,17]. In certain interfaces the misfit may be so large in one 

direction e.g. (111) fcc/{llO} bcc interfaces [18], that the relevant misfit 

accommodation approaches a misfit vernier (M\.) with little effect on the atomic 

arrangements in either crystal. The small misfit direction accordingly poses a 1 D 

MD problem. Minimization of ( l) ,  using (2b) and (3), yields the piecewise linear 

governing equations [10,11] 

where ( t n ]  means that t n  must be replaced by t n  1 if atom n enters the 

parabolic domain of neighboring troughs n * 1. The disadvantage of the 

parabolic approximation, as may be seen from (8), is that the right hand side has 

discontinuities at tn = *+, which is a mathematical complication. 

Possibly the parabolic model was used for the first time [19] to support 

results obti$ned by Frank and van der Merwe 111 using the 1D FK potential in 

Eq. (2). In that case the governing equations were a series of second order 

nonlinear difference equations which simplify in the continuum approzimat ion to 

solvable Sine Gordon equations. Frank and van der Merwe obtained critical 

misfits 111 
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f sa) 

Below a misfit f = fc the equilibrium configuration of the chain is the one in 

which it is misfit strained to coherency (a+b), but still needs an activation energy 

for the introduction of MDs. Above f = fs the energy barrier vanishes and MDs 

enter spontaneously. The question as to the extent to which the approximation 

effects the predictions was investigated using a modified parabolic potential [19]. 

The modification was an improvement on the form (3)  in that the lower part of 

the potential was represented by the trough segment of (3) and towards the 

crests at x = *b/2 by segments of inverted parabolas. This eliminated the 

discontinuities. The modification of the governing equation (8) contains linear 

pieces of positive and negative slope on the right hand side and connect smoothly. 

The investigation using the modified parabolic potential showed that the effect 

on the predicted critical values was not serious. 

Of interest is that, instead of the critical misfits fc and fs of Eqs. (9).  the 

authors obtained for the parabolic model the results 

when expressed in terms of to. The values f '  and f' correspond to exact and 

continuum (approximate) solutions, respectively. It is seen that f; > f i  = 

whereas f i  c f:. Both f i  and f: are greater than f: = 2/7rtO; f, only when to > 2. 
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Frank and van d ~ ~ r  Merwe [I] showed that 1 3  ?: 7 in average cases in which intra- 

and interlayer forces are the same. It may thus be surrmsed that the regime lo 2 

2 covers most common cases. Also if we take conveniently eo = 2~ it follows that 

fi differs from f i  by only about 3% whereas the difference between f i  and fb is 

about 25%. 

2.2. Adsorbed Monolayers: 2 0  Models 

According to the Frank-van der Merwe (FVDM) theory an adsorbed (2D) 

ML grows coherently (incoherently) on a crystalline substrate under 

quasi-quilibrium conditions when the misfit falls below (exceeds) a critical 

value which is somewhat below the value fc in Eq. (sa) because of Poisson 

phenomenon [1,14]. The coherent to incoherent (C-IC) transition is 

accomplished by the introduction of MDs which may be of finite length and 

terminate within the ML (see Fig. 2) (20). The MD contains one more (less) ML 

atomic row as compared to substrate potential troughs when a < b (a > b). 

When the MD involves an extra atomic row the MD grow (shrink) by the capture 

(ejection) of atoms from the surface (row). Shrinkage by the absorption of 

vacancies from the ML may also be invisaged. Phase transitions in adsorbed 

MLs had become a subject of intensive theoretical and experimental study. Not 

only had these studies generalized the theory to account for temperature effects 

but they had also introduced new nomenclature: solitons, discommensurations, 

etc. for MDs and (Taylor) dislocations [20,21] for the atomic configuration within 

the ML where the MD terminates. This configuration differs from that of a 
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conventional dislccztion in that, the atomic positions withiii the ML mt only 

depends on the atomic interaction within the ML but also on the modulating 

potential V(x,y) emanating from the substrate. Although this situation can be 

modelled in terms of Fourier truncations the resulting governing equations could 

not be solved. However when parabolic models are used instead for both the 

soliton and the dislocation they become solvable [20] for the atomic 

displacements in terms of Fourier transforms. Expectedly the analysis is 

moderately complicated in this case. Different sets of difference equations, with a 

variety of boundary conditions apply to different areas depicted in Fig. 2. Simple 

solutions had only been obtained in the continuum approximation in which 

difference equations reduce to differential equations. Of particular interest is t.he 

result that the interaction between the two (Taylor) dislocations terminating the 

soliton (MD) falls off exponentially with separation, whereas it had previously 

been assumed in theories of two-dimensional melting transitions in adlayers that 

dislocation dipole unbinding follows a logarithmic dependence [21]. 

2.3. Thickening Epil ayers 

One of the important problems that "evaded" an exact solution is the one 

of LEMDSs at the interface between a thickening epilayer and its substrate. By 

"exact" we mean a solution that satisfies the governing equation even though the 

equation itself already involves a degree of approximation, as for example the 

continuum approximation which reduces a set of difference equations to a single 
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partial differential equation in the 1D FK model 11). Exact solution9 using 

sinusoidal FK models exist for the extreme cases, namely a ML on a thick 

(essentially rigid) substrate [1,14] and an epitaxial bicrystal consisting of two 

"infinitely" thick crystals [7]. When both crystals are thicker than half the MD 

spacing the "infinite" solution is accurate to within 2% [15]. An extrapolation of 

the ML solution to multilayers, already involves a nonneglegible error at two and ' 

three fold layers. Attempts at interpolations between the ML case and the thick 

layer case had not been very reliable; the errors have not been calculated. 

- - 

Matthews has adapted the Volterra model to study LEMDSs in growing 

epilayers (21. For a growing epilayer A on a thick substrate B the energy per unit 

length of a MD is written as 

f p  when hA > i p  R = t  hA when hA c fp. 

R is a "cut off" radius accounting for cancelling of overlapping of strain fields. p 

and h are respectively the MD spacing and layer thickness and p and u 

respectively the shear modulus and Poisson's ratio. The constant term Db makes 

provision for the core energy of the dislocation. By a proper choice of R 

Matthews could handle epilayers of all thicknesses. However, the Volterra model 

does not provide independently for the interfacial bond strength between -4 and B 

[3]. This is evidently important in epilayers of small multiplicity [13] as one may 

deduce from the fact that Vo appears in the relation (9) for fc and that V, is not 

necessarily determined by pA and b. In thick epilayers the interfacial bond 
i 
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strength vanishes asymptoticallj from the results [3]. 

Exact solutions of the problem of a growing eglayer on a thick substrate 

of a different crystal had previously been studied by various authors and more 

recently in greater detail by van der Merwe and Jesser [13,16), using the 

parabolic model in the form of Eq. (4). Since the crystals have different 

thicknesses, provision is also made for a normal interface stress in the form of Eq. 

(6 ) .  With the conventional assumption that the MDs are long and straight the 

problem is one of plane strain that is most efficiently analysed in terms of an 

Airy stress function @ satisfying a biharmonic equation that can be solved in 

terms of Fourier transforms 17,131. The stresses are obtained from 9 as simple 

derivatives. The Fourier transforms are selected to  satisfy appropriate 

periodicity and symmetry conditions for the film, a free top surface and surface 

stresses (4) and (6) at the interface. The strains accordingly follow from Hooke's 

law and the displacements U and W by integration. The periodicity, symmetry 

and boundary conditions yield a set of linear equations from which the Fourier 

coefficients have been obtained. Thus the problem is solved in principle. By 

energy minimization the equjljbrium distribution of misfit between MS e,,, and 

MDs f, as well as the critical misfit fc, or equivalently critical thickness hc. are 

obtained. For the critical misfit of an epilayer of thickness h having the same 

elastic properties as the substrate, we have, for example [13] 

- 

1 x(s~+cs-x-x~) + 6h( c + s ) ~  
$(x,h) = Tx(s~-x~) + &( s ~ + s c + x - x ~ )  ' 
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s = s i n k  , c = coshx . 

Supposing that a MD enters a coherent epilayer by climb from the free 

surface, the question is: how does the energy of the epilayer system depends on 

the distance ! of the MD from the free surface and on the layer thickness h?  

Whereas the energy per unit length of the MD increases as the MD recedes from 

the free surface energy of coherency (misfit) strain AEe (per unit length of MD) 

will be released. The energy of formation of a MD by climb, i.e. the change in 

energy of the system per unit length of MD AE will thus be given by (see 

Appendix) 

AE =-AEe + AED 

where 

[C] = C when C c h { h when C 2 h 

and I(!) = I(h) with h = e. 
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The ana1yfh.l evaluation of Eq. (13) is difficult herarise of the mmplexit;v 

of the function $(x), however numerically it was possible to show that the 

equation is very closely approximated, for the case of Poisson's ratio equal to 
- - 

1/37 as 

AE/(pac/4~2) = 11.4 + 4 fn(!/c) - 16~2(!/c)f. ( 1 4 4  

The maximum energy AE*, which in this analysis is a "nucleation energy" 

barrier to be overcome by the MD as it climbs to the interface, is given by the 

expression 

AE*/(pac/4~2) = 7.4 - 4 t n (4~2f )  

and occurs at the thickness I* where 

This critical thickness for nucleation is related to the critical thickness for loss of 

coherency, hc by 

h, = C*(2.85 + Cn(h,/c)]. (14d) 

From the relation (14d) one sees that the critical thickness h, is greater than 

three times the critical thickness for nucleation f*. When the film thickness is 

less than the critical thickness for nucleation of an MD then the energy per unit 



15 

dislocation length always rises as i: approaches the i n t c f x e  and no rritical 

thickness for nucleation exists. One could state this result another way. If a MD 

exists at the interface when the film thickness is less than the critical thickness e* 
- - 

then the MD is attracted to the surface and should be eliminated from the film. 

The dependences of AE, -AEe and AED on are illustrated in Fig. 3. 

Whereas AED increases monotonically (essentially logarithmically), -AEe 

decreases linearly until C = h; thereafter it remains constant. AE rises at first to 

a maximum value at thickness C*. Thereafter it decreases until e = h at which 

point the slope changes discontinuously to a positive value characteristic of 3 E D  

at C = h, and AEe assumes a constant value AEf(h). The value of thickness for 

which AE vanishes is C = h,(f), the equilibrium thickness a t  misfit f. 

2.4. Super1 at t ices 

The problem of predicting LEMDSs in epitaxial superlattices has 

previously also been dealt with by Matthews and Blakeslee using the Volterra 

model as outlined in Eqs. (10) [22]. Naturally this involves the same 

shortcomings as mentioned in relation to the growing epilayer on a thick 

substrate. The parabolic model had also been used beneficially in this m e  

(13,161. The analysis in this case differs from the "growing layer on a thick 

substrate" in two important aspects: (i) both layers now participate in MS and 

(ii) the boundary conditions are different. As to MS we have the relations 
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where the superlattice consists of alternating layers of crystals A and B of 

thicknesses 2hA and 2hg and the other quantities in (15) have evident meanings. 

The relations in (14) assume that no bending occurs. When the crystals have 

(more or less) equal elastic constants, as is often the case, also their thicknesses 

arethesameandf= f +  %(e=IeAI=leBI)  [13]. 

As to boundary conditions there are no free surfaces except the outer 

boundaries. The problem of LEMDSs for the interior of the superlattice has been 

analysed using the parabolic model. Apart from the relations (4) and (6) that 

hold for the interlayer interaction field periodicity with a wavelength equal to the 

MD spacing p exists. Additionaly the unit lying between the two midplanes of 

neighboring layers A and B are constrained so that the normal displacement and 

shear stresses vanish on these planes. When the elastic constants are equal the 

condition of vanishing normal displacement may be replaced more simply by zero 

normal stress on this plane. In this case of superlattices the problem of LEMDSs 

could be solved for the equilibrium MS e, and MD density fm. For example for 

the critical thickness qc = hg/b of the layers of type B the authors obtained 

cy = 2( l-v)qc , 

where the function o(x) is somewhat more complicated than $(x) in Eq. (12). 
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Although an ana!yt;cJ expression for the integral could not be found it lends 

itself to iairly accurate approximations and the role of various parameters could 

be investigated. For example, certain useful scaling relations could be obtained: 

thus for R’ = 1 = r it was shown that fc(ql,R,) = fc(q1,R2) where R’ = pL/.2pL,, 

pi1 E p i 1  + and vA = vB. The authors also showed that qc - f4’3 whereas vc 
-, f-2 for the extrapolated Frank-van der Merwe theory [l] and qc - f-1 

(approximately) for the Volterra approach [Z]. 

2.5. Structural Ledge Interfaces 

An interesting LEMD related mechanism of misfit accommodation ( 11.4) 

occurs in solid-solid phase transformations where the introduction of a sequence 

of atomic ledges of the same sign (down or up) effects a trade of the conventional 

sequence of efficient MDs that accommodate the disregistry parallel to a plane 

interface for: ( i )  interface terrace patches of zero average disregistry and ( i i )  

widely spaced MDs with Burgers vector normal to the interface to accommodate 

the misfit that accumelates (stepwise at the ledges) over a number of patches 

[23,24]. Each terrace commences with a maximum disregistry on one side which 

decreases along the terrace to reach an equal but opposite value on the other side. 

In addition this disregistry is reduced by elastic relaxation due to the interlayer 

interaction. Primarily a ledge effects a relative displacement of the atomic 

paterns on either side of the interface (pattern advance), resetting the disregistry 

to the same value as at the beginning of the terrace. It has been shown using the 

parabolic model for disregistry as well as for the MDs; that this trading effects an 
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energetic gain depending on the misf! f and pattern advance 6 at a le@. 

Energetically stepped interfaces become progressively more favorable than plane 

interfaces as 6 increases and f decreases. 
- - 

3. CONCLUDING REMARKS 

A basic aspect of the theoretical study of LEMDSs at epitaxial interfaces 

is the modelling of the periodic interfacial interaction. Frenkel and Kontorowa 

modelled this by a Fourier series (sinusoidal function), truncated at second order 

harmonics. The parabolic model is primarily a second degree Taylor series 

approximation of the Frenkel-Kontorowa model and its extensions. Although it 

is an acceptable approximation only over about one half of the period, it is 
. 

believed to constitute a better approximation to the short ranged covalent type 

interfacial interaction in many semiconductors as compared to a low order 

Fourier truncation. Also it compares favorably to the Volterra model that does 

not provide independently for the interfacial bond strength. The main merit of 

the parabolic model is that it linearizes the equations governing the atomic 

arrangements, (resulting from the intralayer and interlayer interactions) to 

render the equations solvable. The model had been used to obtain useful exact 

solutions for the following problems: (i) in the linear chain. to assess the 

discrepancies between critical misfits predicted by (a) the continuum FK and 

parabolic models and (b) the continuum and discrete parabolic models; ( i i )  the 

nucleation and energetics of a MD that climbs from the free surface; (iii) the 

critical thickness (and misfit) in (a) an epilayer on a thick substrate and (b) a 
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superlattice and ( i b )  the er,agetics of structural ledgs ;;A solidso!i! phase 

transformations. Clearly the parabolic model had been useful. It is foreseen that 

it will continue to be useful in analytical studies of interfaces. 
- - 

ACKNOWLEDGEMENTS 

We wish to thank the Founcldion for Research Development o the South African 

Council for Scientific and Industrial Research, and NASA under grant NAG 

1-350, for generous financial support. 

REFERENCES 

1. F.C. Frank and J.H. van der Merwe, Proc. R. SOC. London, Ser. .4. 1% 

(1949) 205, 216. 

2. J.W. Matthews (ed.), EDitaxial Growth, Academic Press, Xew York, 1975, 

pp 55M09. 

3. J.H. van der Merwe, J. Woltersdorf and J.H. van der Merwe, Mater. Sci. 

Eng., 81 (1986) 1. 

4. N.H. Fletcher; J. Appl. Phys. 35 (1964) 234. 

5. B. W. Dodson, Phys. Rev. B 35 (1987) 2795,5558. 

6. I. Markov and A. Milchev, Surf. Sci. 136 (1984) 519; 145 (1984) 313. 

7. J.H. van der Merwe, Proc. Phys. SOC. London A 63 (1950) 616. 

8. J. Frenkel and T. Kontorowa, Phys. 2. Sowjetunion 13 (1938) 151. 



9. P.M. Stoop and J.A. Snymm, Thin Solid Films 158 (1988) 1. 

10. L.C.A. Stoop and J.H. van der Merwe, Thin Solid Films, 17 (1973) 291. 

11. I. Markov and V.D. Karaivanov, Bulg. J. Phys. 5 (1978) 379; Thin Solid 
- c 

Films 61 (1979) 115. 

12. J.H. van der Merwe and E. Bauer, Phys. Rev. B (1988) To be published. 

13. J.H.  van der Merwe, and W. A. Jesser, J. Appl. Phys. 41 (1988) 1509. 

14. J.H. van der Merwe, J. Appl. Phys. 41 (1970) 425. 

15. J.H. van der Merwe, J. Appl. Phys. 34 (1963) 117, 123. 

16. W.A. Jesser and J.H. van der Merwe, J. Appl. Phys., 63 (1988) 1928. 

17. V.L. Pokrovskii and A.L. Talanov, Sov. Phys. JETP, 51 (1980) 134. 

18. J.H. van der Merwe, Philos. Mag. A 45 (1982) 127, 145. 

19. J.H. van der Merwe, Discuss. Faraday Soc., 5 (1949) 201. 

20. D.L. Tijnsing and J.H. van der Merwe, Phys. Rev. B (1989) To be 

published. 

21. J.M. Kosterlitz and Thoules, J. Phys. C 6 (1973) 1181. 

22. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth, 2 i  (1974) 11% 29 

(1975) 273; 32 (1976) 265. 

23. J.M. Rigsbee and H.I. Aaronson, Acta Met. 27 (1979) 365. 

24. J.H. van der Merwe, S. Afr. J. Phys. 9 (1985) 55. 

APPENDIX: ENERGY OF FORMATION OF A MD 

Equation (29) of ref. 13, when written in terms of the MSs ex and Cy for 

an epilayer on a thick substrate, becomes 
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where c is the reference lattice spacing [7]. The misfit stress pxx which may be 

writ ten as me/ a(&), accordingly becomes 

pxx  = 2p( l+v)f/( 1-v) 

in the coherent e = f configuration of an interface with quadratic symmetry e, = 

Cy = e. The work done per unit length of MD by pxx when the MD climbs to a 

depth I below the free surface is accordingly 

-AEe = -pxx!'a = -2@f(l+v)/(l-v) (A1 1 

The work done per unit MD length to form a MD at a depth !' against the 

.linear stress pxx emanating from the MD (pxx may be obtained from Eqs. (14) 

and (A8) of ref. 13) is given by 

This is nothing but the energy per unit length of MD and may be obtained from 

Eqs. (30) and (A8) of ref. 13 as 

AED = Iimf$pcD, 
P- 
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m 

, /? rd/(l-v)p 1 - 

n[ n+ f -v( x) J fZ, = c 
n = l  

- 

where $(x) has been defined in Eqs. (13). If we write 

x=--n, 2%a! d x = p ' n ; d n = l  2 ra 
P 

and let p + 00 we obtain the result in Eqs. (13). 



23 

FIGURE CI??TIONS 

Fig. 1. Comparison of the sinusoidal (Eq. (2a)) and parabolic (Eq. 3) potential 

representations; curves A and B respectively. 

Fig. 2. Monolayer (ML) configuration with a MD of finite length (betweer, ML 

and substrate) terminating with Taylor dislocations (within the ML) at A and B. 

Fig. 3. Graph of the energy per unit length of MD (see Eqs. (13) and (14)) in 

units of pac/4# plotted against depth in units of L/c. The curves illustrate the 

energetics of a MD that is formed at the free surface and climbs to a depth 

an epilayer of thickness h on a thick substrate. 

in 

Curves A, B, C represent 
. 

respectively the work (AE,) done in forming the MD in a strain free overlayer, B 

the work (AEe) gained from the MS (Peach Koehler) stresses and C the resultant 

energy of formation AE of the MD. The nucleation parameters 1* and AE* have 

evident meanings. The figure is drawn for f = 0.001, h = 260c and h, = 207c. 
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THE PHYSICAL FOUNDATIONS OF CRITICAL PARAMETER 

CALCULATIONS IN EPITAXY 

* 
Jan H van der Merwe - and W A Jesser 

Physics Department, University of Pretoria, Pretoria 0002 
Republic of South Africa 

The critical misfit fc and critical thickness h at 
which an epitaxial bicrystal undergoes a coherent to 
incoherent (C- IC) transition are of great 
importance. The purpose of this paper is to 
reconcile the conditions (quasi- equilibrium 
non- equilibrium) under which growth occurs wit 
the physical bases of the theoretical predictions of 
the critical parameters. Because of the existence of 
energy barriers to the acquisition of the MDs, which 
are needed for the transition, it is inevitable that 
some data will reflect a time lag between growth 
and equilibration. The speeding up of the 
equilibration process by the barrier height reducing 
Peach- Koehler MS forces is highlighted. Criteria 
for predicting critical parameters are set up and the 
phenomenolo ical (Frenkel- Kontorowa and 

these parameters are explained and appraised. 
Examples, demonstrating calculations and their 
correlation with empirical data in each category, 
are briefly described. 

h 

Volterra) an f ab initio models used in calculating 

INTRODUCTION 

The transition of an epitaxial bicrystal, A on B, from registry (coherency) at 
the interface to disregistry (incoherency is of great fundamental and 

transition, has recently become topical again (1- 4). It is therefore vital that the 
principles and models used to predict the critical thickness h (or misfit fc) at  
which the transition occurs, be clearly understood and their reliability be 
assessed, theoretically and experimentally (5,6). 

The misfit between A and B is most simply defined for interfaces with 
rectangular lattice symmetry as (4) 

technological importance. This transition, w h, 'ch will be referred to as the C- IC 

f i  = (ai-bj)/dj ; i = Z,Y , (1 )  



where the value of dj is between aj and bj and depends primarily on the relative 
thicknesses hA and 4, When the interfacial symmetries are different, for 
111) fcc/{llO) bcc interfaces (8) specification of rids rnnw care. Recently 
faun (9) has intrcdcced a powerful description of the interface geometry 

(including misfit) in terms of reciprocal lattice vectors. 

Of the various modes of misfit accommodation (MA) illustrated in Fig. 1 (5,6) 
we shall limit ourselves mainly to (i) misfit (homogeneous) strain (MS I), (ii) 
misfit dislocations (MDs of density f )  which may be efficient (EMDs) or 
inefficient (IMDs) when their Burgers vector is inclined to the interface or even 
split into partials and (iii) a misfit vernier (MV) when the misfit is large and or 
the interfacial bonding small 50 that the periodic strains associated with dDs 
practically vanish. An interestin atomic configuration of MA, referred to as a 
misfit- Taylor didocution (MTDf (10) occurs in ultrathin overlayers of one ML 
or less. The C- IC transition may namely be realized by the nucleation of a finite 
segment of MD at the coherent interface and its subsequent growth by a zip- like 
mechanism effected by the consecutive inclusion (or ejection) of adatoms until 
the MD reaches a boundary edge of the overlayer. In the finite se ment stage 

terminating within the overlayer sheet. This constitutes a "Taylor" dislocation 
within the overlayer sheet and hence the name MTD for this combination of 
dislocations. MTDs may be operative at the C- IC transition in MLs. Two more 
forms of MA, namely, 'lmptures" and distortions" will conveniently be 
introduced at a later stage. Misfit curvature (MC) and misfit strain gradient 
(MSG) modes of MA (5,6) also exist but will be ignored below. 

When the misfit in a given direction is jointly accommodated by MDs and MS 
we have approximately 

- 

B 
- 

the configuration is equivalent to an extra (or missing) row of over P ayer atoms 

where J3q. (2b) applies to layers with arbitrary thicknesses 2hA and 2h,, for a 
system that is constrained not to bend (12 If the temperature at which 
measurements are made differs from the growt b- temperature the thermal strains 
may be different in A and B and must be taken into account. In technology 
thermal strains are often matched (approximately) in accordance with Vegards 
Law by selecting suitable alloy compositions (13). 

BASIC CONSIDERATIONS 

The growth of epitaxial bicrystals involves both the dynamics of adatom 
surface migration and of the acquisition of MDs. Both processes require the 
overcoming of characteristic energy barriers of which the mi ration activation 
barriers Q are typically between 0.5 and 1.0 eV in metal sur f aces with closest 



packin (14). The energy barriers Uac opposing the acquisition of MDs, form a 

perfect 3D crystal, down to a fraction of an electron volt per atom length of MD 
ior overcoming the Peierls barrier to glide (11). Whereas the overcoming of the 
hi l ler  by thermal energy is completely jxcjhibitive, the latter may k reduced by 
Peach- Koehler (MS) forces 5,6) to within the range (< 30 kT) of thermal 
activation for a finite length o MD, and may even be reduced to zefo if the MS is 
large enough. The driving forces (5,6,11) for the abovementioned processes - 
adatom migration and MD acquisition - are the free energy adients AA. These 
forces vanish when the equilibrium configuration is realizeti’at minimum (free) 
energy A : 

hierarc a y with a maximum near 200 eV for the nucleation of a MD loop in a 

\ - 

A = min. e E =  mechanical energy. (3) 

The approximation A x E, applies to MDs which form regular arrays in an 
otherwise perfect crystal. It is exactly valid only at absolute zero. The majority 
of past calculations have been based on (1 1) the equilibrium principle in Eq. (3) . 
Non-equilibrium calculations are of mostly of recent origin and represent 
attempts at (i) calculating activation energies 
reduction of such barriers by Peach- Koehler 
the dynamics of MS relief by the introduction 

, (ii) at establishing the 
and (iii) at describing 

An aspect which is of great significance in the considerations below is the 
growth mode (18). For the clear exposition of the basics of our considerations we 
may retrict ourselves to the growth of overlayers of uniform thickness as in 
ML- by- ML growth. In quasi-equilibrium growth this requires the 
adatom- substrate (A- S) in comparison with 
adatom- adatom (A- A) bonding. bonding induces island 
growth at quasi- equilibrium, but into layerlike growth by 
an appropriately high so that single atoms are 
super critical nuclei and have sufficient time and mobility to move into a local 
(crystalline) stable position. This is a technologically important case. 

MODELS 

The minimization procedures, involved in the application of the governin 
condition (3), can be carried out either through ab initio or phenomenologi eafi 
the phenomenological models (11,21,22) the most relevant features o I the 

model calculations (5,6). In the former the minimization proceeds directly by 
Monte Carlo or other methods using appropriate interatomic potentials (15 . In 

epitaxial system are at first modelled phenomenologically for use in deriving 
energy expressions that can be minimized with respect to the relevant variants. 
Whereas the ab initio models are quantatively more accurate, depending on the 
reliability of the potentials employed, the phenomenological models have greater 
generality and wider predictive powers. 

The phenomenological models can be broadly classified according to the 
representation of the interfacial (A- B) interaction in: (a) the Volterra model (11) 
with an interfacial registry constraint (except at the dislocation line singularity), 
and (b) the Frenkel- Kontorowa (FK) model (2&23) in which the A- B 
interaction is represented by a periodic potential V of wave length d lying 



between u and 6 as in Eq. (1). In the original 1D FK model (21,23) consisting of 
single (ML) chain of particles on a rigid (thick) substrate (see Fig. 2) 

V(Z) = 3 I /b [ l -~u~( '2~~ /b) ] ,  d = b . (4) 

VO may be linked (8) to the adatom migration barrier Q and the desorption 
energy Edtb (A- B bond strength) by 

Q = gVo = (5) 

The factors g and IC depend on the dimensionality, geometry, and bond type and 
strength. In Eq. (4) g =  1. 

The form 4) of V constitutes a 1D truncated Fourier series which may be 

a "linear" interface with 1D misfit between two thick crystals, as in the 
generalized Peierls- Nabarro model (22). The truncation is justified by the fact 
that the Fourier coefficients Cj decay rapidly with harmonic order (24). A 
significant property of the Fourier description is that each Fourier term defines 
an epitaxial orientation and geometry in which the magnitude of the 
corresponding coefficient is a measure of the tendency towards realization of that 
orient at  ion (8,9). 

extended to 2 6 (8,9,20) in the interface between a ML and a thick substrate or to 

The potential in Eq. (4) degenerates into the parubolic potential (25,26) 
- - a sequence of parabolic arcs - - when Taylor- developed and truncated at 

lowest (2 degree ) powers: 

v =  +b-2x2V&, 121 5 + b .  (6) 

The A- A and B- B interactions in both the Volterra and FK (11,21,23) 
models have been modelled in terms of the nearest- neighbor isotropic harmonic 
(linear elasticity) ap roximation. More recently this has been extended to 
anisotropic elasticity fg), nearest- neighbor anharmonicy (Fig. 3), (27) and to the 
case where the bulk structure of the overlayer has a "nearby" metastable phase 
that can be reached by a homogeneous strain (MS) (28,29). In the latter two 
casea the point(s of inflection where the pair potential and free energy of the 
initial structure Lo mes unstable, has dramatic consequences. In the former 
case this leads to additional modes of MA "ruptures" in case of strong A- B 
bonding in combination with positive misfit or to "distortions" at negative 
misfit. In both cases this occurs because the (nearest- neighbor) bonds become 
streched beyond the point of inflection. While the "rupture" may be seen as a 
degenerated MD, the "distortion" represents a stretched bond that separates 
overlayer segments of close registry with the substrate. The overlayer segments 
represent dimer, trimer .... groupings, depending on the magnitude of the misfit. 

It is proper at this point, to record some expressions for the energies as 
calculated for the simplest w e  of isotropic modelling. Since the MS energy ge 
and the energy E; per unit length of MD in a sequence of regularly spaced (p) 
MDs are additive, we may specify them separately: 



- as introduced by Matthews (11) and by Jesser and Kuhlmann- Wilsdorf (30), 

in the FK model (22,25) (for hA,hB I +p) and 

+ p  when hA > + p  
R =  

hA when hA < + p  

in the Volterra model (11). In the foregoin p and u are respectively the shear 
modulus and Poisson's ratio, the subscripts w and B have evident meanings, and 
R is referred to as the "cut off' radius. Note that the interfacial shear modulus 

measuring the strength of interfacial interaction, is absent in the Volterra  AB 9 

model. It is of interest that the expression (Sa) reduces to the form sa) in the 
limit of large p ,  with R g p / 1 0  rather than + p .  Furthermore, the reations I (8) 
and (9) (relating to zero MS 2) may be adapted for nonzero MS simply by 
replacing d and p by d and p with f = d / p ,  where the bar designates quantities in 
a configuration with MS. For purposes of energy minimization we need 
expressions for the total energy per unit area of interface: 

E = ED + Ez 

ED = ( j j  Y D  E' ( x )  + fiEA(Y))/&py per unit area 

E(hA,hB, f,] or E )  

= 2EA/jj for quadratic symmetry (jiX=&zp). ( 1 W  

Equations (11) relate to cross grids of MDs in which the crossing energy of MDs 
may be neglected (22).  EAx) is the energy per unit length of a MD in a sequence 

of MDs spaced at distances j j x  along the x- axis. 



CRITERIA 

Because of its greater analytical simplicity we adopt a criterion for locating 
;iiti,ality (5,6,11J, the limiting operation 

f + o (equivalently z + f) (12) 

defining the inverse (IC- C) of the C- IC transition. Using relations (3) and (10) 
we accordingly obtain the minimization equations 

The relation l?E/l?f = 0 in (13a) is equivalent to requiring that the work W 
needed to introduce an additional MD vanishes: 

In the relation (13b) F is either an external force on the "free" surface that is 
used to introduce the dislocation and ds an element of displacement of the surface 
(21) or F is the resulting integrated force on an existing TD (threading 
dislocation) (11) that glides to lay the MD in the interface and ds in the element 
of displacement of the TD. When F i s  constant Eq. (13b) is satisfied by 

O = F = F Z -  FD' (13d 

where Fz is the MS (Peach- Koehler) force on the TD and FD the line tension of 
the MD being laid in the interface. 

By combining the criticality criterion (12) with one of the equilibrium 
conditions (13) we obtain the equations (5,6) 

0 (h,fc;f = 0) = 0 and 0 (&,f,f = 0) = O (14) 

defining respectively the critical misfit fc and the critical thickness &. @ is the 
corresponding function in Eqs. (13). 

The.fact that in the 1D FK model the density f of MD rises abruptly and 
closes rapidly in on f at the C- IC transition was taken as ground to introduce 
the approximation (25) 

However, this equation overestimates (12) fc by up to 30%. 

The adoption of equilibrium criteria implies that MD are freely available, 
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which they are not because of the existence of energy barriers (5,6,11). In 
analogy to (13b) the energy barriers to nucleation and motion may be obtained 
by integration as 

When reduced by Peach- Koehler forces to about 30 kT and less, the barriers can 
be overcome by thermal fluctuations, given enough time. When reduced to zero 

u= 0 (17) 

the nucleation or motion is spontaneous. In the sections below we briefly 
describe calculatiom of fc and with the view of illustrating the foregoing 
considerations. The illustrations are not exhaustive. Equilibrium predictions 
using Eq. (13c) will be referred to as force criteria, and energy criteria otherwise 
(5,6).  When applicable force criteria are superior in simplicity. 

EQUILIBRIUM CALCULATIONS 

Although the Frank and van der Merwe theory (21) based on the 1D FK 
model, lacks accuracy when applied to r ed  systems, it has the merits of 
simplicity and capability of making predictions about most of the features of 
present interest: a critical misfit 

obtained using either (13a) or (13b) and a critical thickness (see Eq. (14)) 

In these equations the superscript (1) designates 1D FK model. p ( ' )  is the force 
constant of the springs modelling the harmonic fo rm (Fig. 2). Accordingly the 
ratio Co is a measure of the relative strength of the competing interactions; as 
expressed by p ( ' )  and Vi. The authors estimated that fi1)e9% and that f & 1 )  

decreases in oing to a 2D quadratic model to fh2) =7%, due to the Poisson effect 

In 2D interfaces of the kind (110) fcc/{llO} bcc (8,32) the misfits fx and fy 

(31) in a m J el with a 2D quadratic interface. 

differ greatly and are most suitably expressed in terms of the ratio 

r = a n n h n n  (20) 

of nearest- neighbor distances ann and bnn. Aspects of great significance in the 
Fourier description for these cases are 8,9): (i) that minima of interfacial energy 
exist for atomic (ideal- epitaxial) con i igurations in which sequences of atomic 



rows on either side of the interface come into 1D registry (coherency, Le. wave 
vectors on either side of the interface match), (ii) that the matching-and depth 
are determined by the wavelength of the Fourier term and the magnitude of its 
Llieificient respectively, (iii) that the cittyti~ of the minimum is a meaSure of the 
eptaxial tendency of the related epi txial  configuration (dimensionall? and 
orientationally) and accordingly provides the driving force for MS towards 
coherency, and (iv) the depths are additive when 2D registry is attained. "Phase 
diagrams" definin the critical values rxc, ryc and re have been constructed (8,9). 

critical thickness is also defind approximately as in J3q. (19). 

The main consequence of including anharmonicity (27) is that the critical 
parameter vdues branch into two: the lower branch for positive natural misfit 
(coherent overlayer compressed) and upper one for negative natural misfit. The 
magnitudes of the gaps depend on the details of anharmonicity and the misfit in 
relation to the point of inflection of the nearest- neighbor (nn) pair interaction. 
The "rupture" and "distortion modes of MA obtain when the nn bond is 
stretched beyond its theoretical strength (see Eqs. l(f) and 3(a)). 

An important generalization of the foregoing is the one in which there exists a 
structural transition of the crystal to a nearby metastable phase (28,29) that can 
be reached by homogeneous (misfit) strain 1, for example, the tetragonal 
distortion of a bcc phase into a metastable fcc phase. There exist critical 
parameters for both the stable and metastable cor& urations as well as two 

stable ML configuration exceeds the first point of inflection and the natural 
misfit closely matches the tetragonal strain corresponding to the metastable 
configuration, the "critical" thickness. (thickness to which the metastable 
configuration persists) will be very much higher than would be expected on basis 
of the harmonic (approximation) calculation, assuming that the existing misfit be 
accommodated by MS (referred to the stable phase) alone. 

In these, in whic % rxc and r mark (19,20,21) 1D coherency breakdown the 

points of inflection of the free energy vs strain curve. I ! the critical misfit in the 

The model on which Eq. (19) (and its 2D extension) for the critical thickness 
is based, suffers from the deficiencies as listed above. Equally important 
deficiencies are that the strain adients in the overlayer normal to  the interface, 
have been neglected (8,9,19,20r Previous attempts at  including these have all 
been approximate. Ezuct solutions (12,26) had only been obtained by using a 
parabolic (approximate) potential of the form in Eq. (6). The resultin 

substrate (both isotropic and with equal elastic moduli p and v, including the 
interface) the critical misfit is given by (26) 

expressions are complicated. For the case of a single multilayer on a thi c& 

where h 5 hA and @ is a complicated function of z and a, that increases in 
complication when the moduli are different. The Volterra approach instead 
yields (11) the results (see Eqs. (7), (9), (13)) 



(22) 

These are evidently simpler than Eq. (21) to analyse, but arP rat.her inaccurate at 
small thicknesses because of the a proximations involved in Eqs. (9). Note that 
in Eq. (22) (and also in (24) belowp h E hA falls in the class hA < t p  of Eq. (9b). 

The parabolic model has also been used to obtain (exact solutions) critical 
parameters (12) e.g. for a superlattice obtained by stacking A and B layers in 
alternating succession, giving 

where P is defined in Eq. (2b), (k(hg) = 2(1- vAB)\/d and is a complicated 
function of elastic constants and thicknesses, which simplifies greatly when these 
quantities are respectively,equal. Of interest is that h / d  varies approximately as 
f-K with K x 1.22 as compared to K = 2 in Eq. (19) and K x 1 in E . (22). Energy 
criteria were also used in conjunction with the relations (7) and 9 8) to calculate 
approximate values for (i) the critical thickness in an epitaxial bicrystal of two 
equally thick halfcrystals (33) and (ii) the critical size I& of a hemispherical 
island on an extended 3D substrate crystal with similar elastic constants (34). 
The results in (i) correlated excellently with the observed critical thickness in 
PbS/PbSe epitaxial bilayers (35). The results in (ii) were qualitatively correct 

The' power of the force criterion in Eq. (13) (combined with the Volterra 
model) to handle rather complicated cases is demonstrated by the derivation of 
the critical layer thickness (1 1 )  

(34). 

in which the C- IC transition was accomplished by imperfect partial dislocations. 
In relation (24) A is the an le between the slip direction and the interfacial 
direction which is normal to t % e line of intersection of the slip plane (S) and the 
interface, Q is the angle between the line of the mixed MD and its Burgers vector, 
and CP is the angle between the unit vector ir, normal to S and the line of 
intersection of the free surface and a plane which is normal to the free surface and 
contains 6. Also, 70 and 00 are respectively the stacking fault energy and the 
surface free energy of the overlayer surface where the gliding TD traces a step of 
height besin ck. A relation analogous to (24) can be written down for a MD that 
is generated by climb (11). The force criterion was also applied to superlattices 
by Hirth and Evans (36) and to multilayers, (allowing for bending) by Bokii and 
Kuznetsov (37) with satisfactory results. 

1 



NON- EQUILIBR9UM CALCULATIONS 

We have classified as non- equilzbrium (5 ,6)  all calculations ( i )  of energy 
b r i e r s  to the acquisition (nucleaLiori h-ell as motion) of M Z ,  { i i )  of b a r i e x  
reduction and elimination by Peach- kznhler forces and (iii) of the dynamics g i ;  

The Frank- van der Merwe (21) analysis of the 1D FK model is also ver 
powerful in illustrating non- equilibrium considerations, particularly features (i 
and ii) listed above. The authors considered the introduction (nucleation) of a 

ut, obtaining for a coherent layer U((, f) and U=(f' 

- the acquisition processes, e.g. dynamics - of MS relief. 

'I 
MD f rom the free end of of the chain by displacin the endpoint by an amount 

W,f) = (2 vdo/%)[(cos%to - sl co:sat)+f t o  (%to - %t)+2& 1, (%a> 
(25b) U d f l  = (4 V o ~ o / n ) [ ( ~ - f  a)+ - J~oarccos(ffo)l, 

where &,2 = 1,0 and 81,2 = - 1,l when < < 1 and ( > 1 respectively. The 
displacement at0 of the f r e e  end is defined by 

sin a(,) = ffo. (26) 

A MD is created when the endpoint is displaced from the stable equilibrium 
position ( = t o  to the nearest stable equilibrium position ( = 1+(0. When f = 0 
it follows from (26) that to = 0, defining (see J3q. (25a)) the nucleation 
barrier at zero mis 9 t as 

U(t,O) = (2 Vi)(()/%) (1- COS%<) . (27) 

The residual part of V(<,f)  constitutes the reduction of the barrier by the 
Peach- Koehler MS forces. These considerations are illustrated in Fi . 4. 
Though Fig. 4 corresponds to a misfit f = fc ( E  equilibrium critical misfit 2$do)  
the acquisition of MDs is still confronted with a nucleation energy barrier. 
Curves A, B and C display respectively the natural barrier U(t,O), the details of 
the reduction of the barrier by the Peach- Koehla  forces and the net barrier 
V(( , fc) .  The barrier height attains the values 4 W&/T, 1.6 V&/r (approx.) and 
0 when f = 0, fc and fs respectively. ,4t 

the barrier vanishes and MDs enter spontaneously (without thermal aid). For 
metals Vi,fo/r is of the order of 1.0 eV so that even at f = f c  the activation 
energy barrier is still about 1.0eV per atom length of MD. The nucleation 
barrier for a finite (critical) len th of MD may thus still be above the common 

MDs are normally needed for the C- IC transition, for example threading 
dislocations. The energy barriers to tlhe nucleation of MDs at  the crystal surface 
using continuum theory and in the interior of a crystal with MS, using ab initio 
16) calculations had also been carried out with equivalent conclusions. The 

thermal threshold of about 30k f . It thus seems likely that "easy" sources of 

i oregoing considerations are helpful in interpreting recent results obtained by 



Tsao et al (16) regarding MS relief in SixGel-, strained layers grown on (001) Ge 
substrates. The authors have compared the components FZlpar of the 
Peach- Koehler MS and the dislociLtion (~resvmably TDs! line tension FDjpar 
forces with the o c ~ r v e d  MS relief and coficicded that "mztstable strained layer 
breakdown $most directly correlated with (i) an excess stress 
T ='(F- - FDjpa4/h b and (ii) absolute temperature TI. When written 

eZC e, Par 
as an excess force 

the result represents the non- equilibrium (F # 0) equivalent of relation (1%) and 
may be correlated with the reduction of the activation barrier as described by 
Eqs. 25a) and (25b), and displayed in Fig. 4. Althou h Eqs. (29) and (25), refer 

nucleation of a MD, the principles involved are the same. The relation Fexc = 0 
still describes equilibrium as in Eq. (13c). When Fexc # 0, the related barriers 
delay MS relief which only begins t,o occur with an observable rate at an excess 
stress rexc/p z 0.024 that has reduced the Peierls barrier of a critical length of 
TD to within the thermal threshold at 494OC. 

to di 1 ferent cases, the former to ithe motion of a % D and the latter to the 

A very significant mechanism of reducing the energy barrier to the acquisition 
of MDs, and to tailorin them, has been discovered by Fischer et al 39) for the 
growth of GaAs on (100 Si substrates. The authors had cut the (100 \ Si surf= 

surface forms a 2D staircase with ledges along 0111 and [ O i l ] .  The ledges 
apparently facilitate the recruitment of substrate islocations that terminate at 
the Si surface, drawing them into the led es where they become fairly tightly 
bound EMDs that are prevented from thr eai ing the GaAsoverlayer. 

Dodson and Tsao (17 have also analysed the dynamics of MD acquisition 

most prominent one is that the dislocations are driven by a local stress qOc that 
can be expressed in terms of a residual mismatch f - f ( t )  - Z(h), in which Z(h) is 
the equilibrium MS at thickness h and the MD density f(t) at time t falls short 
in accommodating the residual mism.atch. The authors derived the equation 

A 
off axis (tilted optimaly 1 by about, 40 towards [001]) so that the exposed Si 

using a phenomenologi Cal model and making various assumptions of which the 

for the dynamics of MS relief; C being a constant and fo a background dislocation 
density. Equation (30) gave a satisfactory description for the observed MS relief 
of SiGe alloys on (100) Si substrates with values of C and 10 given by C = 30.1 
and fo = 10- '. 



SUMMARY AND CONCLUSIONS 

The main objectives of this paper have been (i) to correlate the principles, 
specifically equiliblibm/non- equilibrium principles 011 which critical 
misfit/critical thickness calcu!ations 2 9  based, with the expciiriiental conditions, 
under which they are measured, ( i i )  to describe the models used in the 
calculations, (iii) to highlight the deficiencies, advantages and disadvantages of 
the various approaches, and (iv) to briefly describe sample calculations, makin 
no attempt to be exhaustive. We have given prominence to the prediction o 
critical parameters in layer growth, an approach which we justified on the 
grounds that either an overlayer has a natural tendency to ow in the 

homoepitaxial growth, or the overlayer can be coerced into growing layerlike by a 
suitable supersaturation. In a C- IC transition the coherency breakdown is 
accomplished by the acquisition of MDs, a process which is opposed and retarded 
by a hierarchy of energy barriers, some of which naturally fall within the thermal 
threshold and others which need be reduced, mainly by Peach- Koehler forces to 
come within this threshold. It is therefore not suprising that measured critical 
values are scattered over regimes covering the entire range from non- equilibrium 
to equilibrium values. In metals where the Peierls barriers to dislocation glide 
are believed to be relatively small inany observations correlate with equilibrium 
predictions whereas in semiconductcrs with strong localized covalent bonding the 
barriers are high and many observstions cannot be correlated with equilibrium 
calculations (5,6,11). Because of their relative simplicity most calculations of the 
past have been equilibriumwise. However, recently there had been a growing 
interest and activity in the non-equilibrium regime. This is very timely 
particularly because of the technological importance of semiconducting materials. 

As to models, the phenomenologhl models of Volterra and of Frenkel and 
Kontorowa have been the main goalls of the past and will still play a significant 
role in the future because of their simplicity and greater analytical predictive 
power. Ab initio calculations, rightly aimed at greater accuracy, will be carried 
out with increased frequency. 

eater simplicity, particularly in 

small e;- 2 MLs) thicknesses and in addition is very powerful in sefecting 
epitaxial orientations for which the cioherency lock- in power is maximal. 

ei 
M L  by- ML mode because of strong adatom- substrate bonding an r subsequent 

The Volterra model has the advantage of 
allowin for varying iayer thickness, whereas t f e FK- model is more accurate at 
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Abbreviations 

AAI 
AS1 
c- IC 
FK 
IMD 
KS 
NW 
MA, 

ML 
TD 
VM 

adatom-adatom interaction 
adatom-substrate interaction 
commensurate-incolnmensurate, coherent-incoherent 
Fren kel-Kontorova 
inefficient (imperfect) misfit dislocation 
Kurdjumov-Sachs 
Nishiyama-Wassermann 
MC, MD, MF, MS, MSG and MV Misfit accommodation, curvature, 
dislocation, fracture, strain, strain gradient and vernier 
monolayer 
threading dislocation 
Volterra model 

1. Introduction 

1.1. Misfit 

The epitaxial growth of one crystal on another has been studied as a fundamental 
problem for over six decades. Only in the past two decades, however, has there 
existed a practical interest in understanding the phenomena more completely. 
This recent practical interest has arisen out of the great need of the semiconductor 
industry for crystals free from dislocations and other defects. As the use of 
electronic devices became more demanding and sophisticated, the need for 
perfection'of the crystals comprising the devices has increased. This is particularly 
true for superlattice structures. 

Central to the growth of nearly perfect epitaxial overlayers is the concept of a 
coherent or dislocation free interface. The thickness above which dislocations 
appear in the interface during the growth of an epitaxial layer is known as the 
critical thickness. Because of the importance of this parameter to the fabrication 
of acceptable semiconductor devices, classification of the various approaches to its 
calculation is desirable. Before discussing the Icalculations of critical thickness, it is 
necessary to define the nature of the misfit associated with the interface between 
two different crystals. 

The general case of fitting together two crystals of different lattices in an 
oriented way across an arbitrary but flat interface, was dealt with theoretically by 
Pond (11 and by Bilby et  al. [2). We follow the latter authors who introduced a 
geometrical closure failure B to a Burgers circuit enclosing a section of the 
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interface. The vector 5 varies with direction of the interface and may be written 
in terms of a reference vector V lying in the interface as 

B = [ S ; ’  - S i ’ ] V ,  (1) 
where S, and S, are the “deformation” matrices that generate respectively the 
lattices of crystal 1 and crystal 2 from a reference lattice in which B and V are 
defined. The general case that includes crystal symmetry and coincidence lattices 
can be incorporated in the use of eq. (1) to express the deviations from 
coincidence and symmetry positions. In this chapter we are concerned with cases 
in which the crystals are simply related. to one another through the matrix S of 
small deformations. In this case the closure failure is represented by a set of 
dislocations of sufficient separation to be considered individually, When V cuts m, 
dislocation axes of Burgers vectors b, then 

B = m,b, , 
I 

and the average spacing between like dislacations of given type i measured along 
V is Vm,-’. It is convenient to express the closure failure in terms of three 
physically distinguishable components [3]: B, is the component normal to the 
interface and represents the component of B produced by tilt around V, where V 
is the unit vector parallel to V; B, is in the plane of the interface and normal to V 
and represents the twist or shear component; and lastly B, is parallel to V. The 
component B, is the misfit component which is of interest to the present chapter, 
and it is this component that provides a dlefinition of misfit f as measured along 
the direction V of the interface as 

When the deformations S are small and contain no rotation terms a pure misfit 
boundary between two parallel orthorhombic crystals results and typically sug- 
gests one of two choices for the reference lattice. When the two crystals across the 
interface are of comparable thickness, or are both “thick”, then the choice of a 
reference lattice that has lattice constants between those of either crystal is 
appropriate. According to a simplified treatment of the closure failure [3] one of 
the reference lattice constants, say A is chosen to be 

c = a,a , l i ,  , ( 4 4  
where Q ,  and u2 are the lattice constants in a chosen principal direction B of the 
respective crystals 1 and 2 and 

a= $(a, + a,) (4b) 
is the average lattice constant. This choice of reference lattice constant is also the 
one adopted by van der Merwe in his modt:l for thick crystals [4]. Equation (3) in 
conjunction with eqs. (1) and (4a) and (413) yields for this case 

f=f, = ( a ,  - a , ) / c :  similar thickness, (4c) 

as the misfit in the &direction of the lattices. 
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The second choice of reference lattice is appropriate to a thin crystal on a thick 
substrate. In this case i t  is natural to take the substrate as the reference crystal. If  
we call the reference crystal 1 then S;' = I ,  the identity matrix, and hence eq. (1) 
becomes 

B = [ I  - S Y ' ] V  . ( 5 4  
which is equivalent to the approach of Bollmann [ 5 ] .  The misfit now, is by eqs. 
(3) and (ja).  

fa = (a2  - a , ) / a ,  : thin overlayer. (5b) 

The advantages of definitions (4c) and (5b) have been discussed by Matthews [6]. 
Epitaxy of crystals with different symmetries is also of interest. A case that had 

been considered extensively is the epitaxy of metals at (111) fcc/(llO) bcc 
interfaces [7,8] in which two dominant epitaxial orientations (the Kurd' mov- bo I 
Sachs and the Nishiyama-Wassermann orientations) differing by about & occur 
depending on the ratio of nearest-neighbor di!;tances. The two misfits f, and fi, of 
the form (4c) or  (5b), are usually defined for two suitable orthogonal interfacial 
directions, f, and fi being significantly different. 

1.2. Modes of misfit accommodation 

The above considerations are purely geometrical. The special response of the near 
interface atoms to the fields AA and BB within each of two misfitting epitaxial 
crystals A and B and the coupling field AB between them is normally referred to 
as "misfit accommodation" (MA). In the foregoing we have tacitly assumed that 
the misfit f is accommodated by dislocations, so-called misfit dislocations (MD's). 
However, this is not the only mode of MA. The resulting mode in any given case 
depends largely on the magnitude and nature of f  as well as those of the fields. 
The possibilities considered are illustrated in fig. 1. 

Consider a pure misfit boundary, i.e. S, and S2 are diagonal matrices that 
represent small dimensional changes, not rotations. There are numerous modes 
by which the misfit of this interface can be accommodated. These mechanisms can 
operate individually as a single mode or in colncert with several modes participat- 
ing. Homogeneous elastic strains that reduct: the effective misfit from f to zero 
(fig. lb),  Le. B - 0 ,  have first been observt:d in metals (9-131 as reviewed by 
Matthews [14] and are now commonly obsenred in strained layer superlattices of 
semiconductor crystals [15]. This strain is referred to as the misfit strain (MS) 
[16-171, and interfaces for which the misfit i!; accommodated entirely by MS are 
said to be pseudomorphic or coherent [ 181. !Similarly, free-standing crystals may 
bend with neutral planes that are positioned so that the misfit at the interface is 
accommodated by the lattice parameter gradient introduced through lattice 
curvature [19-221. We can refer to this mec:hanism (fig. IC) as misfit curvature 
(MC). A third strain mechanism for accommodating the misfit also exists. It is a 
simple gradient of strain (misfit strain gradient: MSG) that takes a coherent 
interface from its constrained lattice parameter at the interface to its bulk lattice 
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Fig. 1. Diagrammatic illustration of modes of Misfit A.ccommodation (MA) in a bicrystal of crystals A 
and B with natural lattice parameters a and b .  The full lines designate atomic planes and the dashed 
lines interfaces, all 
interaction, or both: 
into registry (i= b) 
interface; Misfit Curvature (MC) mode of MA. (d) Misfit accommodated by a Misfit Strain Gradient 
(MSG) within a finiie thickness. (e) Crystals elastically relaxed so that both the residual interfacial 
misfit and the strain are very much localized around regularly spaced (dislocation) lines; Misfit 
Dislocation (MD) model of MA. 

C. Burgers vector inclined to the 

parameter at the free surface [23] as in fig. Id. This can occur when the height to 
width ratio for a deposit is comparable to the mutual misfit. More precisely, since 
the MSG is not expected to be linear but to decay rather faster than linearly with 
distance normal to the interface, there is an effective thickness above which the 
lattice parameter is essentially that of the bulk. It is this feature which means in 
practice that there is no critical thickness (or the critical thickness is infinite), but 
there is a critical misfit which decreases with increasing width. Heterostructures 
involved in ultralarge scale integration can take advantage of this misfit accommo- 
dation mode. Recent evidence of misfit dislocations between the reconstructed 
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topmost surface of a small gold platelet and its bulk underlying layers [24,25] 
suggests that the MSG mode of accommodating misfit may not always be 
energetically favored. 

When the interfacial bond is weak and the misfit large [SI, the structure of the 
interface (fig. la)  resembles the rigid misfit vernier (MV). This mode of misfit 
accommodation or one approximating it has been observed in some metal-non 
metal epitaxial systems [26]. 

An uncommon mode of misfit accommodation is fracture (misfit fracture: MF). 
If the interfacial bond is strong and the yer brittle, then a tensile misfit 
strain can be relieved by a crack on th eavage plane that i.hormal to 
the interface. Epitaxial garnet films sho of misfit accommodation [27]. 

The most common mode of accommodating misfit is by misfit dislocations 
(MD’s; fig. le). A MD is defined as an interfacial dislocation that generates the 
transition between the two lattices and is said to accommodate the misfit f. 
Essentially it replaces the long-range stresses due to the MS by the oscillatory 
strains of the MD‘s to reduce the overall energy. There are several choices of MD 
arrays that will accommodate the same misfit. Minimum energy considerations 
coupled with barriers to MD generation determine which of the available choices 
will be realized. The most common MD’s have an edge component of the Burgers 
vector b that projects along the direction of interfacial misfit. The most efficient 
MD has its Burgers vector in the interface and is therefore one of pure edge 
character. It is referred to as an efficient or perfect MD, and was first observed by 
TEM in PbS/PbSe bicrystals [28]. It is geometrically possible to accommodate a 
pure misfit boundary of (001) orientations between orthorhombic crystals with a 
crossed grid of screw dislocations (291 if the crystals are rotated so that the a-axis 
of the one is parallel to the b-axis of the other and the misfits in the two directions 
are therefore equal but of opposite sign. This same misfit boundary can also be 
accommodated by a crossed grid of perfect MD’s. While the above considerations 
show that MD’s are not restricted to any particular type of dislocation one usually 
expects MD’s to have edge character. 

The first experimental evidence for misfit accommodation by MD’s was ob- 
tained from etch-pit analyses of germanium crystals with small gradients in 
chemical composition (301. Examples of misfit accommodation by only inefficient 
(or imperfect) misfit dislocations (IMD) (Burgers vectors lying out of the 
interface as shown in (fig. If) can also be found [31]. It is also possible to have 
both inefficient and pure misfit dislocations present concurrently in the same 
interface [32]. Indeed, accommodation of misfit by dislocation half-loops and 
inefficient dislocations that have glided into the interface has been documented 
[33-351. Clearly then, the mechanisms available for the introduction of the 
various types of MD’s is of significant practical importance. It is now commonly 
observed that MD’s occur in most epitaxial systems, as has been reviewed by 
Matthews [6,14]. 

The last mechanism for accommodating misfit to be discussed here is that of 
ledges. Often substrates are oriented off major crystallographic planes so that 
steps in the surface are available for nucleation sites. Further, the appearance of 
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growth steps and ledges at interphase boundaries is common [36]. The occurrence 
of stepped interfaces to improve the matching of interphase boundaries with misfit 
has been known for some time [37-40). The suggestion that steps associated with 
terraces may accommodate misfit at an epitaxial boundary has also been made 
[41]. I t  is only recently that the energy of a misfit boundary with ledges has been 
calculated [42]. A planar misfit boundary may improve the overall interfacial 
matching if a sequence of steps. that effects a relative displacement of the atomic 
patterns on either side of the interface so as to insure that disregistry is never 
greater than about one quarter of an atomic spacing. is introduced (42,431. A 
detailed treatment of this problem is in progress [44]. 

1.3. Goals 

The main goal of the present paper concerns the accommodation of misfit by 
MD’s for the case of a pure, flat misfit boundary. It is the MD’s that are the 
center of attention because of their importance to electronic device performance 
and reliability. If MD’s and MS(2) coexist, the portion of the misfit f accommo- 
dated by MD’s being f, one may write for each interfacial direction of a thin 
epilayer A on a thick substrate B (to first order) [14] 

f = f + 4 ;  ( 6 4  

the corresponding quantities in the two directions being equal when the interfacial 
symmetries are quadratic, but otherwise unequal. In the Frank and van der 
Merwe formalism [46] 

- i i - a  e=- - i i - b  
f = -  a - b  f = -  

b ’  b ’  a 

where a and 6 are the normal atomic spacings in A and B and ii is the misfit 
strained spacing in A; B, being thick, is unstrained. When both crystals are thin 
provision must be made for MS in both crystals. Furthermore, coherence may 
exist in one direction and disregistry with MD’s or a MV in a perpendicular 
direction (81. An implicit assumption, also in eq. (6a), is that the temperature 
remains fixed at the growth temperature, or the half crystals A and B have the 
same thermal expansion coefficients. Otherwise the equilibrium MS t? may 
decrease, o r  increase or even change sign. Technologically this is undesirable and 
provision must be made to fit both crystallographical misfit and thermal expansion 
coefficient [45]. 

The goal has thus been reduced to describing existing considerations on the 
conditions that determine the distribution off between f and  e. Here i t  suffices to 
report [46] that under certain conditions there exists a critical misfit f :‘’ so that a 
monolayer (ML) with f < fi’)  grows coherently ( f =  0) while MD’s are present 
when f >f;’’. If forf <fi’) more ML’s are added a critical thickness h,  is reached 
above which there is a transition to MA with MS and MD’s jointly. Conversely 
for given h = h, the misfit f is critical, i.e. for f > f(h,) f,(h) there will be a 
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transition from coherency (registry, commensurate configuration) to incoherency 
(disregistry, incommensurate configuration). The goals of this chapter are to 
review and appraise existing calculations of f ,  and h,  with special emphasis on 
their dependence on the physical properties of the bicrystals concerned and to 
their correlation with experimental data - particularly the influence of the ex- 
perimental conditions on this correlation. 

Predicrion of crirical inisJir a& rhickness in epitaxy 

1.4. Governing physical principles 

The systems (vapors, crystals) and processes (adsorption, desorption. adatom 
diffusion, MD generation and motion) involved in epitaxy fall respectively in the 
categories of thermodynamic systems and rate processes. Therefore at an inter- 
mediate stage any internal change under constant external constraints brings the 
system nearer to the equilibrium (stable) minimum free energy ( A )  configuration. 
The process is driven by free energy gradients - hA and progress is facilitated by 
thermal (temperature T) fluctuations to overcome a hierarchy of energy barriers 
U (e.g. adatom migration activation energy, and energy barriers towards nuclea- 
tion and motion (Peierls) of dislocations) separating consecutive metastable 
configurations. Thus the closeness of an observed configuration to equilibrium or 
the degree to which it had advanced towards equilibrium. will otherwise depend 
on the deposition rate (supply rate of adsorbate). 

Since the analysis of equilibrium configurations on the basis of minimum free 
energy, i.e. 

A = minimum (equilibrium), (7) 

is so much easier than the dynamics of non-equilibrium processes, most theoreti- 
cal predictions of the past were equilibrium based, the assumption being that in 
many practical cases sufficient time had been available for the system to come 
close to equilibrium. The perception is that knowledge of equilibrium configura- 
tions will also provide useful guidelines of tendencies. Additional simplification 
had been introduced by noting that, because of the regularity of the crystals and 
of the MD arrangements adopted, the energy (E) contribution to A is dominant 
and hence that the equilibrium configurations may be adequately characterized by 
the condition that (6,8,46] 

E = minimum (equilibrium), (8) 

Clearly the applicability of the theory requires the barriers to be small enough as 
compared to thermal energies. 

In the problem of epitaxy the scale of E, which has often been referred to as 
the interfacial energy, is primarily determined by the strength of the AB 
interfacial interaction and secondarily by the misfit. The primary goal has 
therefore been to find the dependence of E on these parameters. The basic 
assumption is then that the structure (mode of MA) is determined by the minima 
of E with respect to these parameters. 
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Of great importance to the consideration of critical size. e.g. critical thickness, are 
the epitaxial growth modes that have been named by Bauer (471: Frank and van 
der Merwe (ML-by-ML. 2D) growth, Volmer-Weber (island, 3D) growth and 
Stranski-Krastanov (island on top of a few ML’s in 2D mode). Also the growth 
mode is partly controlled by the prevailing degree of non-equilibrium as expressed 
in terms of supersaturation. The supersaturation increases with decreasing sub- 
strate temperature T,  and increasing deposition rate. The equilibrium criterion for 
the growth mode can be expressed in terms of the specific surface (y,, yB) and 
interface (yAB) free energies [47].or bondings [48] per unit area E,, and EAB as 

(9) 
A Y A B  YA + YAB - Y B  0 or E,, - EAB s 0 for 2D growth 

> O  > O  for 3D growth, 

where B is the substrate and A the adsorbate. For growth of the (n + 1)-st ML on 
the n-th ML, AyAB must be replaced by AyAA-O. However, by,, may even 
become effectively positive due to influence of the nearby substrate. This is an 
important reason for Stranski-Krastanov growth [49]. Equations (9) are simply 
saying that when AB bonding is strong compared to AA bonding the tendency 
will be to form AB rather than A A  bonds. i.e. lateral rather than vertical growth. 

The formation of smooth and planar interfaces and of uniform epilayers are 
highly desirable, particularly in superlattices consisting of thin alternating A and 
B layers, and is facilitated by 2D growth [48,49]. In this case one half of the 
growth cycle will inevitablr be 3D-wise at equilibrium. 3D growth can be modified 
to occur 2D-like by having the appropriate supersaturation. The smoothness of 
the interfaces will furthermore be facilitated by a choice of materials for which the 
degree of three-dimensionality is low [48] as may approximately be expressed in 
terms of a surface free energy “mismatch” (491. Since most practical applications 
require smooth planar interfaces and uniform thicknesses, the fabrication pro- 
cesses are tailored to achieve these goals. This lends more credibility towards the 
usual practice of predicting critical misfits assuming layerlike growth. 

1.6. Models 

Almost all the earlier theories modeled the interaction (AA and BB) within the 
crystals in terms of continuum elasticity (harmonic approximation) theory 
[4,6,46]. Subsequently anharmonicity has been introduced [50,51], and more 
recently ab initio atomic calculations, using appropriate potentials, have also been 
carried out [52]. 

The earlier theories adopted essentially two approaches for modeling the 
interfacial (AB) interaction: the Volterra continuum model in which A and B 
interfacial atoms undergo relative displacements parallel to the interface that are 
limited to integer values of the (reference) lattice parameter, and the Frenkel- 
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Kontorova (FK) model [53] that views the interfacial atoms of A to be in a 
(sinusoidal) periodic field of crystal B and vice versa. The Volterra model (VM) 
which has been extensively and profitably employed by Matthews [6. 141 has the 
advantage of versatility and mathematical simplicity over all regimes of thickness. 
Its main disadvantages are (i) its inaccuracy at small thicknesses and (ii) that i t  
does not allow for the widely varying interfacial (AB) bond strengths which are 
important for thin epicrystals. The FK-model on the other hand makes appropri- 
ate allowance for AB interaction and has fairly simple analytical solutions for the 
extreme cases: (a) a ML on a thick substrate for which the governing equations 
reduce to sine-Gordon types [46,53-551 and (b) two thick crystals [4,56], but has 
to resort to approximations for intermediate cases except when the periodic AB 
interaction is represented by parabolic arcs [56-571. 

The model introduced by Frenkel and Kontorova is one-dimensional and was 
first applied to epitaxy by Frank and van der Merwe (461 in their classic paper 
concerning misfitting monolayers on thick (essentially rigid) substrates. It was 
subsequently extended to two interfacial directions [8.46,54,55].  As in the 
FK-model the complexity of the analysis was limited by truncating the corre- 
sponding two-dimensional Fourier series of the periodic interfacial (AB) potential 
at low harmonic order. a practice which has now been properly justified [%I. This 
extended model has been used to show [SI (i) that minima in the (free) energy of 
an epitaxial bicrystal occur when the interfacial structure and dimensions, and the 
relative crystal orientations. are such that parallel interfacial atomic rows of the  
two crystals are equally spaced, irrespective of whether in the rows the atoms are 
in registry, (ii) that the depth of the free-energy minima may be directly 
correlated with the values of specific Fourier coefficients and (iii) that the depths 
are additive should matching also occur in a perpendicular direction to achieve 
complete 2D registry. Thus, while the values of the Fourier coefficients are 
indicative of the maximal energies that can be gained (the tendency to epitaxy) 
from row matching in one o r  two dimensions, the matching itself predicts 
precisely for given crystal structures the orientations for which epitaxy is ob- 
served. Naturally the net gain will be reduced by strain energy if the matching is 
achieved by MS. 

The difficult part of the relevant analysis is to find expressions for the self 
energies (line tension) E, per unit length of a MD. In the FK model and its 
generalizations the analytical techniques have been different for a ML on a thick 
substrate and for two thick crystals and approximate otherwise. Because of its 
frequent use it is convenient for later reference to give the expression of E, for 
two thick epicrystals [4,56]: 

where pa,,, pa and pb are respectively shear moduli for the interface and crystals 
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A and B. u, and u,, Poisson's ratios. c = ! ( o  + b) is a reference lattice parameter 
and p the M D  spacing. When p is large ( c l p  e 1) eq. ( loa) becomes 

In the Volterra model the self energy per unit length of a MD between an epilayer 
of thickness ha  and a thick substrate is given by (6. 141 

where R is the "cut-off radius" usually taken to be 

p / 2  when h ,  > p / 2 ,  
R ' ( h ,  when h , s p i 2 ,  

and the Burgers vector b is essentially the c in eqs. (10). We note the close 
similarity between (1Oc) and ( l l a )  with R replaced by ~Ln, ,p/InA, , -p/10 for 
crystals with similar atomic interactions instead of p / 2  as in ( l l b ) .  

This expression for E, can be adopted for the line energy of a MD or used to 
calculate the energy per unit area, 

E = p - l E X  +p-lE' ,  
D A D  y 

= 2 E,/p for quadratic symmetry , (124  
of an interface for a network of MD's assuming that the crossing energy is 
negligible [6, 141. When the misfit i q  partly accommodated b!. MS(4) the MS 
energy, which is of the form [6,54,59] 

for interfaces with quadratic symmetry, must be included. For this symmetry the 
principal strains Z are equal and the shear strain vanishes. When both crystals are 
thin each will be misfit strained and contains MS energy of the form (12b) 
[6,57,60]. In any case the total energy is 

E =  E,+ Ee (W 
where (12a) and (12b) are special cases of E, and E, respectively. 

1.7. Criteria 

t 

Various criteria had been used in the past to calculate the critical misfit f ,  and 
critical thickness h,. These have recently been analysed in some detail [61]. It is 
therefore necessary that we understand the basis of each and put them into 
perspective. We begin by considering equilibrium criteria. For this purpose we 
may display the functional dependence of the total energy of a thin epilayer A of 
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uniform thickness h on a thick substrate as E ( / ? .  f; f or e). We may further 
minimize E by varying the MS(4) (or equivalently the MD densityfin eqs. (6)) at 
constant h and f, obtaining from eq. (8) the governing equations 16,461 

This defines the equilibrium values ern and f,, of e and f. 
The form (13a) of the equilibrium condition clearly implies extensive interfaces 

with many MD's so that it Is  meaningful to speak of varying f continuously rather 
than discretely. The second part of eq. (13a) lends itself to an interpretation that 
not only overcomes this difficulty but in some cases also leads to a drastic 
simplification of the analysis: if E does not change with j ,  it is saying that the work 
W done to create the MD vanishes, i.e. 

W = I F d s = O  forC=C,,, and f = f , ;  (13b) 

for 2 9 C,,, the work W 5 0 respectively. In eq. (13b) F is an external force needed 
to generate the dislocation and ds is the surface displacement, or F is the 
integrated force on an existing dislocation (extending from the interface on the 
free surface or other interface) from which the interfacial MD is created (drawn 
out along the interface) and ds is an infinitesimal displacement of the (existing) 
dislocation line. Both F and ds are measured in the direction of increased length 
of MD line laid along the intersection of the interface and the slip plane of the 
"threading" segment of the crystal dislocation in the strained epilayer. It is the 
glide of this threading dislocation (TD) that creates increased length of MD line; 
the glide direction and direction of "increased" MD length are the same. When F 
is constant (independent of the displacements) the equilibrium equation (13b) 
reduces to [6,14] 

O = F = F - - F  e D -  (134 
where Fi is the MS-induced Peach-Koehler force on the TD and FD the resistance 
due to the MD line tension. F may also be an external force needed to inject a 
MD and ds  correspondingly a displacement of the point+) of application of F as 
in refs. [46,54,55]. 

The problems associated with the forces between MD's in an interface of finite 
width between two cylindrical half crystals, their interplay with misfit and MS, 
and the mechanics of consecutive incoming MD's, have been analysed in some 
detail by Nabarro [62]. These provide useful insights into the behavior of MD's at 
the onset of coherency breakdown. 

Equations ( 13) are three equivalent criteria (except that (13c) is a special case) 
for the equilibrium distribution of given misfit f between MD's ( f) and MS ( e )  at 
given thickness h of epilayer. As h decreases, the MS energy for fixed 2 decreases; 
alternatively the MS c? for fixed MS energy increases so that the density fof MD's, 
needed to satisfy eq. (2), diminishes until it vanishes ( f =  0) at a critical thickness 
h, [6, 141. Conversely f, = f  is the critical misfit at given thickness h = h,. The 
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conditions for the critical misfit f, at given h and the critical thickenss h, at given f, 
are respectively [6,57] 

4 ( h , f , ; f = O ) = O  and 4 ( f , h C ; f = O ) = 0 .  (14) 
where 4 is one of thc functions of eqs. (13). 

Consider the introduction of MD's into an initially coherent epilayer. The line 
tension increases the energy according to E, in eqs. (10) or (11) and the 
Peach-Koehler force decreases the MS energy E? in eq. (12b). Furthermore, in 
the FK-model, at equilibrium there are no MD's (f = 0) below the critical misfit f, 
and many - almost enough to.accommodate all (f=f) the misfit - above f, [46]. 
On the basis of these considerations'it has previously [6] been assumed that the 
condition for f, is approximately equivalent to the condition that f=f, when all 
( e  = f )  the  MS energy E in eqs. (12b) can be traded for MD energy in eq. (12a) 
with f = f  [56]: 

E#, f,; e = f) = E,(h, f ;  f = f >  9 (15) 

instead of a configuration where E and f coexist. This approximation has sub- 
sequently been used by other authors, as dealt with below. Recent calculations 
[57] have however shown that this approximation is rather inaccurate and may 
overestimate the critical misfit by as much as 25% and the critical thickness by as 
much as 35%. 

The foregoing considerations apply to the case where the availability of MD's is 
not an obstacle [6,46]. Normally the introduction of MD's is subjected to the 
overcoming of energy barriers [46] 

U =  I F d s .  (16) 
bar 

The most prominent barriers are associated with t h e  nucleation of MD and the 
Peierls stresses opposing their motion [6, 141. The barrier heights are reduced by 
the misfit stress (Peach-Koehler forces). When U vanishes, i.e. 

u=o,  (17) 
MD's generate spontaneously without the aid of temperature fluctuations [46]. 

When U > O  the acquisition of MD's depends upon the thermal energy kT. 
When U 2 30kT the barriers are completely prohibitive and the system will 
remain almost indefinitely in a metastable configuration. When U < 30kT the 
attainment of equilibrium takes time and the observed configuration may differ 
significantly from equilibrium. 

2. Calculations: equilibrium 

The criteria employed for calculating critical parameters as defined in eqs. 
(14)-( 17) may be broadly separated into equilibrium and non-equilibrium 
criteria. The equilibrium category can be subdivided into (i) energy criteria when 
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the energy values are compared as in eq. (1.5) or the energy is properly minimized 
as in eqs. (13). (ii) stress or force criteria as given in eq. (13c) and ( i i i )  
geometrical criteria where good ”matching” is implied to be equivalent to low 
energy. The non-equilibrium category, which recently became the subject of 
intensive study, can be subdivided into calculations concerning (i) nucleation 
energies of MD’s ( i i )  other energy barriers and ( i i i )  the reduction of the 
activation energy by MS until i t  ultimately vanishes as in eq. (17) and MD’s 
generate spontaneously. and (iv) the solution of the rate equation to establish the 
degree of progress at any time t towards achieving equilibrium. Often diverse 
approaches are encountered within each of these categories. 

2.1. Energy criteria 

2. I .  I .  Precipitates 
The first calculation of a crtical size was made by Nabarro for the case of a 
misfitting sphere in a crystalline matrix (631. Although this is not really an 
example of “epitaxy” i t  is directly related and. being the first, warrants some 
consideration. Nabarro essentially employed the criterion (15) and equated the 
elastic strain energy associated with the coherency strains, MS, to the rise in 
interfacial energy that occurs when coherency is destroyed. The interfacial energy 
was estimated by the energy required to melt a monolayer at the interface. The 
same model was employed b! Jesser [64] but with a more realistic expression for 
the interfacial energy. The sum of the misfit strain energy and interfacial energy 
was minimized as in eq. (13a) to find the critical radius above which coherency 
loss is energetically favored. In  this case the interfacial energy expression of van 
der Merwe was used. A similar model in which the interfacial energy is replaced 
by the energy of a single Volterra type prismatic misfit dislocation loop of radius r 
equal to that of the misfitting spherical precipitate ( rp)  provides yet another 
expression for the critical radius rc (651. The authors considered the nucleation of 
a prismatic dislocation loop within the precipitate. its wth by climb and its 
ultimate positioning on an equatorial plane in a circle 8 radius infinitesimally 
smaller than r p .  Its energy of formation E, = E, - A€; is approximately given by 

8r* r r i4pbf  
I n - ; - + l  - P b 2rp 

2(1 - V) ( e-b ) 1 + 4 p / 3 K  ’ 
E,  = 

where E, and A€? ( F = f )  are respectively the (Volterra) self energy of the loop 
and the MS energy release in the precipitate and. p.  K. V, b andfrespectively the 
shear modulus, the bulk modulus, Poisson’s ratio and the Burgers vector (all of 
the precipitate) and f the misfit. From (18a) two alternative critical radii may be 
deduced: 

; s = 1 . 2 ,  1 I b(l + 4 p / 3 K )  
rc = 

the one (s = 1) when E, = 0, i.e. the formation becomes energetically favored (see 
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eq. 15). and the other (s = 2)  when dE,/ar = 0, i.e. the precipitate can support an 
already existing loop at its surface. Note that eqs. (18b) are implicit equations in 
the unknowns r :  = r,,. 

2.1.2. Layer-like growth 
The first calculation of critical misfit and thickness in epitaxy was made by Frank 
and van der Merwe [46] in their analysis of a one-dimensional Frenkel-Kontorova 
model 1531. In  this model the competing forces positioning the adatoms were 
modeled as follows: the adatom-adatom interaction (AAI) that favors the 
crystalline structure of the overlayer by. harmonic (approximation) forces of force 
constant p") and the periodic (periodicity 6) adatom-substrate interaction (ASI) 
b a one-dimensional Fourier series (truncated at first order) of overall amplitude 

Sqmc 
sy IV, bo\ v =  ; 1 - cos(27ix/b)]. 

(194  
d de Equilibrium considerations (eqs. 13a, b) yiel a critical misfit f:" of 

bo\ e;,. (19b) 

The appearance of p(I '  and M i .  as measures of AAI and AS1 respectively, 
stresses the importance of interaction strengths in determining f,. 

These results can be extended to a thickening overlayer (crudely though) by 
assigning to a layer of multiplicity n the force constant ~ p " ) .  Equations (19) in 
conjunction with ( 14) accordingly predict a critical thickness [46] 

The authors estimated fl" to be about 9% when the AAI and the ASI's are the 
same. The extension of these considerations to non-equilibrium phenomena will 
be discussed in section 3. 

Although the foregoing model is one-dimensional it has proved to be quite 
successful and has been the basis and stimulus for numerous extensions to more 
general cases. The most obvious extension was to two-dimensional model mono- 
layers (ML's) [8,46,54]. This extension introduced Poisson's ratio v, of the ML, 
whereby eqs. (19a) and (19b) became 

(21a) 

= p,hb2/(1 - U,)W" (21b) 

for cases with quadratic interfacial symmetry, pa now being the shear modulus 
and h the thickness; h = a for a ML. Critical thicknesses as in eq. (20) may also 
be defined for this two-dimensional extension. The effect of Poisson's 
phenomenon is essentially to reduce the critical misfit; in the average case (AAI 
and AS1 the same) from f;" = 9 %  to about 7%. with an analogous effect on 
critical thickness. 

4 
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A relevant case that had been very topical recently is the epitaxy of metals at 
(1 11) fcc/( 110) bcc interfaces [7,8.49.5_5] where the misfit differs greatly in two 
mutually perpendicular directions and the occurrence of coherency in one direc- 
tion only is a natural consequence. Loss of coherency for this case has been 
studied extensively on the ML or quasi-ML level as for eqs. (21). Also in this case 
a “confi urational” parameter e of the form in eq. (21b). containing the bond 
ratio p b - / (  1 - v)W,, and thickness h. together with the nearest-neighbor distance 
ratio r = a[fcc ( l l l ) ] lb[bcc (llO)] rather than the misfits explicitly. enter natural- 
ly into the theory. When e is small enough a ML grows with 2D coherency for a 
wide range of r values. As h ,  and accordingly €, increases there is a critical 
thickness It, at which there is a transition to 1D cohere’ncy in the Kurdjumov- 
Sachs (KS) orientation at a critical thickness hkS when r is near 1.09 (small misfit 
f Ls) or to 1D coherency in the Nishiyama-Wassermann (NW) orientation at hkw 
when r is either near 0.94 or 1.15 (small misfits f ‘  ). The transition to the KS 
orientation requires a rigidlike rotation of about @and its realization may thus 
be impeded. Furthermore, higher critical thicknesses for loss of the residual 1D 
coherencies exist. These critical thicknesses are only known semi-quantitatively , 
like h,  in eq. (20). In all these cases the Poisson effect is important, particularly in 
the MS energy. The role of Poisson’s ratio on critical thickness in a variety of 
cases has also been studied by Jesser and Kuhlmann-Wilsdorf (591. 

The most useful extension to the considerations of Frank and van der Menve 
was to thickening epilayers. including combinations with different elastic con- 
stants [56.57,61,66]. Additional improvements to the model have been made in 
the form of more accurate representations of the MD energy. as has recently been 
reviewed [67]. While the extensions of the model to very thin epilayers (less than 
about two ML’s) and to very thick ones are acceptable, it is poor in the regime 
exceeding two ML’s; particularly when the misfit is small. It is in this regime that 
the approximations employed in the calculations introduce significant effects 
because the energy of the MD’s in the interface is given by an expression that 
relies on the epilayer thickness being greater than half the spacing between MD’s. 
This limitation led Matthews to adopt a Volterra dislocation approach to calculate 
the energy of an array of MD’s [6. 141. The Volterra model employs a “cut-off’ 
radius R to the dislocation strain field defined with regard to eqs. (1 1). Since near 
f = f, the MD spacing becomes large the finite thickness h of the epilayer A must 
be taken as R.  Minimization of the total energy in eq. (12c) yields for f ,  at given h 
(using the relations (14)) the result [6,14] 

4 

or,  alternatively for the critical thickness h, at given misfit f the implicit equation 

for a bicrystal A B  with quadratic interfacial symmetry. Note that relations (22) 
imply that va = vb = v. Also no dependence on interfacial interaction is incorpo- 
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rated. This approach is good for thick epilayers but is inaccurate when the 
epilayer is thin because the role of the AS1 is significant here. and the strain field 
of the MD can extend along the  plane of the interface to greater distances than 
the cut-off radius, which is equal to the film thickness. However. i t  has the great 
advantage of simplicity in its representation. 

The calculation of critical thickness by energy minimization has also been 
carried out for partial MD‘s. Such MD‘s will have stacking faults associated with 
them. The stacking fault will extend through one of the crystals and will terminate 
at the MD in the interface. This case has been treated in the model of van der 
Merwe using eq. (10) modified for the incomplete Burgers vector [68], as well as 
from the Volterra dislocation-energy point of view using force-balance criteria 
[6,  141. The model of van der Merwe makes provision for a variable interaction. 
The effect of generating incomplete MD’s associated with stacking faults is to 
reduce the critical thickness. This can be understood as the result of the shorter 
length of Burgers’ vector reducing the energy of the MD’s to a greater extent than 
the stacking fault raises the energy. Negative stacking-fault energy and lattice 
parameter changes normal to the plane of the fault will also affect the critical 
thickness, but are usually not considered in the analysis. 

The question of critical thickness h,  has also addressed more recently by 
Bruinsma Zangwill [69] using the Volterra approach to the energy of a MD but a 
different analytical technique. They included anisotropy effects. but made the 
simplfying approximation that there exists an “easy” direction for loss of coheren- 
cy by the introduction of a single sequence of MD‘s. One would expect this to 
occur for epitaxy at (1 11) fcc/( 110) bcc interfaces characterized by widely 
different misfits in two perpendicular interfacial directions. The authors obtained, 
like Matthews, an implicit equation of the form (22b) but with somewhat different 
entries and give their (approximate) result as 

h ,  = .,If, ( 2 3 )  

where K ,  is a “constant” depending on  elastic constants as in eq. (22b). 
Only one model exists, i.e. the one in which the periodic adatom-substrate 

interaction potential is represented by a succession of parabolic arcs [56,57], 
rather than a truncated Fourier series, that has been solved exactly for all 
thicknesses ( h )  and strengths of atomic interaction. In this model the effect of 
unrealistic potential maxima (high cusped peaks) on the prediction of critical 
thickness is drastically reduced because at the critical thickness the MD’s are 
widely spaced and the contribution of the peaks to the overall energy is 
presumably small. The critical misfit for given h and materials with identical 
atomic interactions is now given by 

1 X(s’ + cs - x - X ’ )  + 6(c  + s)?2( 1 - 2 v) 
+ ( X , a ) = Z  x ( s 2 - x ’ ) + 6 ( s ’ + s c + x - x ’ ) / 2 ( 1 - 2 v )  ’ 

6 = 2 ( 1 - v ) h / a ,  s = s i n h X ,  c = c o s h X .  
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For different elastic constants and thicknesses the critical misfit f, has the same 
form as (24a), but now the function 4 is vastly more complicated [70]. Alterna- 
tively, for given misfit (f, = f) this is an implicit equation for the critical thickness 
h,. 

2.1.3. Island growth 
The foregoing case of uniform epilayers covering a substrate is of great practical 
importance. In the initial stages of epitaxial growth. however. most systems 
exhibit island growth, which may be Volmer-Weber or Stranski-Krastanov 
growth [47]. If the misfit is not small or if the  thickness at which the growing 
deposit becomes nearly continuous is large then loss of coherency will tend to 
occur when the deposit is in the form of individual islands. The coherency strain 
energy for the case of island deposits was first calculated by Cabrera [71]. This 
model included elastic strains in both the island and the thick substrate. It was 
used to calculate the critical radius above which it is energetically favorable to 
introduce MD’s [59].  The calculation of critical misfit and thickness in this case 
differs somewhat from that for layergrowth. The authors have assumed that at 
the interface between a non-coherent hemispherical epitaxial island A of radius R 
and a thick substrate B MS’s of magnitude Fo and e,, exist with equilibrium values 
F,” and E:. The condition for the critical misfit was taken as 

i.e. that almost all the misfit is accommodated by MS. For the case in which the 
atomic interactions are the same ( p ,  = pb = p )  and the interfaces have quadratic 
symmetry ( a ,  = a ,  = a )  i t  follows. using eq. (loa). that for given R (approxi- 
mately) 

where a, and a, are the nearest-neighbor distances in overlayer and substrate 
respectively. This is an implicit equation in f,. For given misfit f, eq. (25b) defines 
a critical size R,. 

Because of the finite size of an island the introduction of discrete MD’s causes 
an abrupt decrease in MS which was observed experimentally in tin deposits on 
tin telluride by Vincent [72]. For this case of discrete MD generation the 
calculation of critical thickness and subsequent MD introduction with island 
growth laterally has been considered from the point of view of energy minimiza- 
tion using Volterra MD’s [ 6 ] ,  and using the Frank-van der Merwe model [73]. 
Vincent used the criterion that MD’s would be generated at an island size for 
which the MD would reduce the MS to zero. The main significance of the above 
calculations for the present paper is that the island morphology is the ideal one 
for availability of MD’s because an efficient MD can be generated at the edge of 
the island. This mechanism for the generation of efficient MD’s has been 
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confirmed experimentally by Yagi et al. [74]. Therefore one expects the barriers 
to MD generation to play only a small role in epitaxial systems exhibiting island 
formation, particularly at elevated temperatures where dislocation mobility is 
high. In  such cases good agreement between experimentally observed values of 
critical size and calculated values is found. 

*IL" 

2.1.4. Superlattices 
In  view of the increasing importance of superlattices over the past decade it 
became similarly important to develop an energetic approach to calculating the 
critical thickness for this case. A first approximation was made by applying the 
van der Merwe expression for the energy of an array of MD's to the stack of 
interfaces [67]. This approximation did not, however, include the reduction of 
MD energy caused by the cancellation of strain fields across the layer between 
interfaces. This cancellation is strongest when the layer thickness is small. 
Further, the expression loses accuracy when the misfit is small. Both of these 
effects, which are relevant to the case of superlattices of layers A and B ,  have 
been recently accounted for more properly by reworking the interfacial misfit 
boundary from first principles including the boundary conditions applicable to 
superla ttices [57]. 

In this approach [57] the following boundary conditions were adopted for the 
interior of an extended superlattice: (i) the normal and tangential forces at the 
interface are almost everywhere linear functions of the corresponding relative 
displacements of atoms on either side of the interface [56). (ii) the stresses acting 
through the interface are continuous there, (iii) the midplanes between interfaces 
remain plane and contain no shear parallel to the interface. (iv) the superlattice 
faces normal to the interface are free of forces and (v) the crystals may otherwise 
be approximated by isotropic elastic continua. The governing equations of this 
model are exactly solvable. The critical misfit f,, as determined by eq. (14), 
depends on the ratios of elastic constants ( M )  and thicknesses ( r ) .  i.e. on 

and on the thickness of any one layer (taken as 2h,), through an equation of the 
form 

where 2h, is the thickness of layer A ,  c is a reference lattice spacing, 6 ( q ) =  
2(1 - v)q and &(X) is a complicated function of the variable X, elastic constants 
and thicknesses. I n  accordance with the criterion (14) this equation defines for 
given misfit f, = f ,  and ratios H and M, a critical thickness t) = q,. 

Various simple and asymptotic cases of this prediction have been considered of 
which the simplest is the one in which the layer thicknesses and elastic constants 
are respectively equal. In this case 
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C- - cosh’ X 4=-- 
sc + X - sinh X cosh X + X ’ 

i.e. it is no longer dependant on thickness and elastic constants. Also, approxi- 
mately 

(27a) 

Two conclusions from these results warrant special mention. Firstly it follows 
from a log-log plot that q, varies approximately as f -’; ,y = 1.22 as compared to 
,y = 1 for previous estimates and ,y = 2 for eq. (20) and the approach of People 
and Bean [75], which apparently agreed with observations of Bean et al. [76]. 
Also this calculation shows that when the layer thickness is small the energy of the 
MD’s decreases by a factor of two over that of a single layer on a thick substrate. 
For thick layers, these energies approach one another. Further, since the misfit in 
a superlattice is accommodated equally by homogeneous elastic strains in each of 
the layers when elastic constants are equal, the critical misfit and the critical 
thickness both increase by a factor of up to five over their respective values for 
the case of a single layer on a thick substrate. 

-3.1.5. Graded eppilaver 
A critical thickness calculation for a bicrystal of a different kind was performed by 
Ba I and Laird [77]. The authors considered coherency loss by the introduction of 
6 cd ‘I imperfect MD’s in a graded epilayer in III-V compounds, expressing the 
variation of lattice parameters by Vegard’s law for a uniform composition 
gradient. They used the Volterra approach in expressing the stresses and calcu- 
lated the work W needed for MD’s to glide in from the free surface; a mechanism 
which also involves the overcoming of surface image barriers. Defining h, as the 
value of h which satisfies the relations (13b) and (14) they obtained (approxi- 
mately) 

1 + Pm exp - , 
d h ,  = - 

1 - Pm 2Pm 

where d is the average spacing of atomic planes aligned parallel to the interface, 
pm is the value of g / / i  at which W rises to a maximum as t increases and g is the 
distance of the MD from the free surface. The dependence of h, on grading s is 
calculated using the parametric equation (28) h,  = h,(p,)  and s = s(p,) (the 
latter from the equilibrium equation), rather than calculating p, directly from an 
extremum condition. In comparing these predictions with experiment the authors 
concluded that even in epilayers without threading dislocations, dislocation 
multiplication, which will inevitably take place, may introduce serious dis- 
crepancies between theory and experiment. 
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2.2. Stress and force criteria 

We now consider in some detail the application of force or stress balance in 
calculating equilibrium critical parameters. We have discussed, in relation to eqs. 
(13) the conditions under which force balance and energy minimization (equilib- 
rium) procedures are equivalent. Neither explicitly involves the nucleation energy 
barriers associated with the acquisition of MD’s. The minimization procedure may 
ignore the barriers because only initial and final energies are relevant. The force 
balance procedure, on the other hand. presupposes the existence of threading 
dislocations (TD’s), so that nucleation is i n  any case irrelevant. The mechanism of 
gliding a threading dislocation that threads the substrate. interface and epilayer 
on a single slip plane into the interface to make an increased line length of MD 
was first proposed and observed by Matthews [lo]. An inevitable consequence of 
this mechanism is that the resulting MD is of imp rfect type (fig. 1); as for 
example, when the generating dislocation is a &glide dislocation in the 
semiconductor. The Peach-Koehler driving force F,- on the dislocation, due to 
MS, is proportional to the thickness of the epilayer. The force FD opposing this 
glide force is the line tension. Matthews has used the Volterra approach (analog- 
ous to eq. ( l l a ) )  to calculate the line tension. When a critical thickness is reached 
for which the resultant vanishes so that the condition (13c) is satisfied. then any 
further increase in thickness will sweep the threading dislocation along the glide 
plane while it draws out a MD along the interface [I;]. 

mna 0 

2.2.1. Thin epilayer on a thick sitbstrate 
This model has been improved by adding the line tension u, (force F,) of the step 
generated at the free surface when sweeping the threading dislocation [6, 141. 
Furthermore, if the threading dislocation splits into partials separated by a 
stacking fault (energy x, per unit area) in the epilayer then the above model can 
be extended to include the  relevant force F, needed for stacking fault formation. 
The condition in (13c) may accordingly be used to derive an expression for the 
critical thickness above which imperfect MD’s will be introduced [6, 13,14,35]. 
The force balance equation (13c) now takes the form 

0 = FE + F,, + F, + F, 

= Bbhecos A + Db(1 - Y cos2 a)[ln(h/b) + 11 + cob sin a + y,h/cos 4 
(294  

and yields for the critical thickness h, (5 = f )  the implicit equation 

where A is the angle between the slip direction and the interfacial direction 
normal to the line of intersection of the slip plane (S) and the interface, a is the 
angle betwee line of the mixed MD and its Burgers vector b and 4 is the angle 
between the unit vector ti, normal to S, and the line of intersection of the free 4 
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surface and a plane which is normal to the free surface and contains r i .  Note (i) 
that in the term In(hlb) h is the cut off radius assuming that h is less than half of 
the MD spacing and (ii) that for a perfect MD the term is absent and 6 is the 
complete Burgers vector. This example illustrates the power of the force balance 
approach. A disadvantage of the approach is that it handles less well the 
interaction between MD’s. 

3.2.2. Siiperlauices 
Hirth and Evans developed a criterion for critical thickness by considering 
injection of a dislocation dipole or a crack from the edge of a stack of coherent 
layers (781, into a superlattice in which consecutive layers have equal thicknesses 
and elastic constants. They calculated the Peach-Koehler force on the mobile 
segment of a dislocation dipole with one 129 in one interface and the other leg in 
an adjacent interface connected by a segment threading a layer on its slip plane. 
This force was equated to the line tension of the mobile segment as was done in 
previous models [15]. The thickness for which this force balance occurs is the 
critical thickness h, that was calculated for isotropic elasticity as well as aniso- 
tropic elasticity. The results of this approach essentially agree with those of the 
earlier similar model [15], and for isotropic elasticity give 

h, = 
2 4 1  + v) 

This result is very much the same as the ones already dealt with except that the 
V% corresponds specifically to the GaAs/GaAs,,,,P,, system considered and ro is 
a core cut-off parameter. 

2.2.3. Multilayers 
Bokii and Kuznetsov have also calculated the critical layer thickness for mul- 
tilayered double heterostructures of G a , h  l -, P, -, As, alloys from the point of 
view of balancing the MD line tension and surface step resistance to dislocation 
motion with the Peach-Koehler force o n  the MD due to the  MS (791. They 
started with the expression for critical thickness by Matthews [SO] and allowed for 
elastic bending (a non-vanishing couple) by employing the elasticity calculation of 
Olsen and Ettenberg for the elastic bending of multilayer heterostructures [Sl] to 
develop a modified expression for the critical thickness of the topmost layer in the 
stack. They obtained for the critical thickness h,, in the topmost layer of a 
multilayer of multiplicity j the expression 

6( 1 - v cos’ a)(ln(h,lb) + I]  + 0.4ra,(l - v 2 )  sin a 
8 ~ ( 1  + v) cos 8 sin +‘(E, + Nb)  1 (31) h,, = 

where 6 ,  v, a, h, have evident meanings (see also eqs. (29)), a, is the lattice 
parameter and E, the elastic deformation into the topmost layer, N the number of 
MD’s generated, J, the angle between the (111) slip planes in the alloy and the 
free (001) surface and 8 the angle between the MD Burgers vector b and the [liO] 



W . d .  lesser mid J .  H.  W I I  der Mermr Ch. 41 &Pq 
direction. Note that the line energy of the surface step has been expressed in 
terms of shear modulus and Poisson‘s ratio; the last term in the numerator. Their 
experimental results are consistent with the introduction of MD’s by the Mat- 
thews mechanism of activating glide of the threading dislocations on their slip 
planes and also with this mechanism occurring in the topmost layer being grown 
at any given time. Comparison of their calculated values of critical thickness with 
their measured values shows reasonable agreement. 

2.2.1. MD formation by climb 
The above arguments rely on the glide of dislocations into the interface. It has 
also been observed that MD’s are introduced into the interface by climb (74,821. 
Even at relatively low temperatures climb can be the dominant mechanism for 
relieving MS through the introduction of MD’s. Matthews equated the climb force 
on a dislocation due to MS to those forces that oppose climb, and calculated the 
critical thickness for the generation of MD’s by climb [6,14]. He included the 
possibility of faulted dislocation loops as well as the extra energy associated with 
creating or annihilating new surface during climb. Since MD’s generated by climb 
would naturally be in edge orientation the climb force is simply Bbhecos Jl, + 
Db In(hlb). where & is the ansle between the glide plane and the free surface. 
Since $,, is naturally small we may approximate the width of the surface strip 
created or annihilated by b and the relevant force due to line tension by ?cob, 
where o, is the surface free energy. I t  follows as for glide that 

D[ln(h , /b )  + 11 2 a,, 
Bf - y,/b COS &,, 

h,  = ’ 

Whether or not this mechanism operates will be controlled by the availability of 
point defects provided thermally or otherwise. 

The climb of MD’s out of the interface during interdiffusion of two crystal 
halves of a bicrystal has also been considered [83-851. These considerations of the 
climb of MD’s have in common that the MD’s leave the interface by climbing in 
both directions i.e. toward both surfaces. This can lead to threading dislocations 
or to a distribution of MD’s throughout a zone of increasing thickness with 
increasing interdiffusion or to polygonization walls. The additional influence of an 
excess of point defects generated by the Kirkendall effect has been discussed 
[6,86]. The Kirkendall effect can either a idor  hinder the climb process of the 
MD’s, depending on the relative diffusivities of the atoms. 

2.3. Geometrical criteria 

Geometrical criteria are not true equilibrium [24] criteria. Most of the geometrical 
models for accommodating misfit are of the type introduced earlier [3,5] which in 
effect relate a closure failure to a dislocation density. This model is usually 
applied to planar interfaces that are narrow in thickness. There exist rather thick 
interfaces over which MD’s accommodate the misfit in a thick transition region, 
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referred to as a continuously graded junction. The inmcded density tTA of misfit 
dislocations in a cross-section of the graded interface can be related to the linear 
density nL of misfit dislocations in an abrupt interface of the same misfit as that of 
the graded interface when a transitional interface thickness w,, is obtained [87]. 
When the graded interface is sufficiently thin that w, = 1 / n L  then n A  = n i .  For 
interface thicknesses below the transitional value H ’ ~ ,  the misfit dislocatio spacing 
is fixed at the value l / n L .  For interface thicknesses above w, ,  the 4 density 
of misfit dislocations is proportional to the lattice constant gradient. These 
considerations are useful for relating dislocation densities in the substrate, abrupt 
interface and graded interface in a unified way. 
. The physical basis for these models beyond geometrical considerations is the 
relief of long-range stresses. In effect the geometrical models do not minimize 
long-range stresses by considerations that balance energies or forces but instead 
require that the long-range stresses be zero. Therefore they should be reasonable 
models when the misfit is not small, i.e. in a regime where energy and force 
balance considerations show that the residual long-range stresses should be near 
zero once the critical size is exceeded. In fact it has been shown that the mode of 
MA becomes vernierlike as the misfit increases. with vanishing MS (i.e. longer- 
range stresses), as for rigid crvstals. Furthermore. deep minima in the AB 
interaction occurs for one-dimensional matching and maximum depths for com- 
plete registry. This provides energetic justification for the geometrical models [8]. 
The half-widths of the minima are zero for infinite interfaces and increase with 
decreasing interface area. 

The usual task of the geometrical model is to find the required MD density that 
will accommodate the misfit rather than to predict a critical size. I t  is also useful 
for selecting the various types of MD’s that accommodate the misfit [3,29,88]. 
There is, however, one geometrical criterion for critical size that is both simple 
and useful for estimating values quickly. Brooks [89] used the classical concepts of 
dislocations to arrive at essentially a geometrical criterion for critical size of a 
misfitting sphere by simply equating the misfit f multiplied by the sphere diameter 
2R to the Burgers vector b of the MD. Physically this criterion is equivalent to 
requiring the introduction of a MD into the interface when the accumulated 
displacement from the misfit vernier causes an atomic shift to the next available 
potential energy trough, as was noted with regard to eq. (25c). The Brooks 
criterion is a good rule of thumb that gives critical-size values that are not very 
different from those provided by most sophisticated criteria [@I. 

areal \ 

3. Calculations : non-equilibrium 

In the foregoing we have discussed existing calculations of critical misfit and 
thickness based on equilibrium criteria. Empirical data, particularly on semicon- 
ductors, exist that simply cannot be understood in terms of equilibrium principles 
and can only be interpreted on the basis of non-equilibrium considerations and on 
the supposition that the path towards equilibrium goes through one or more, or 
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perhaps a distribution of, metastable configurations separated from each other 
and from the final stable configuration by energy barriers of the kind discussed in 
relation to eq. (16). For example, when the bicrystals are initially free of 
dislocations, MD’s need be nucleated, possibly in the form of critical sized loops 
that would grow spontaneously in the presence of MS stresses. Misfit-accom- 
modating dislocation loops have indeed been observed in metals (34,351 as well as 
semiconducting epicrystals 190,91). The processes of approach towards equilib- 
rium states clearly involve thermal fluctuations, and knowledge of the height of 
the energy barriers, e.g. the ititclearion energ!; U of a MD loop that would 
continue to grow in the presence of the MS induced stresses. and of the rate or 
degree of advance towards equilibrium, are of vital interest. The latter, in 
particular, would assist in distinguishing the equilibrium or non-equilibrium 
nature of experimental data. 

41Pu 

3.1. Monolayer approach 

Both these questions have been addressed previously. Continuum theory predicts 
that U - 200 eV [52,78], which completely rules out the thermal acquisition of 
MD‘s in an otherwise perfect crystal. Clearly U will be reduced by the MS 
(Peach-Koehler) stresses in a coherent epilayer. In fact, Frank and van der 
Merwe [46] have shown, using the one-dimensional model that the activation 
energy for the introduction of a MD in a coherent ML is 

U ,  = (4W,,to/r)[(1 - - f ’ t ; ) ’  ’ -ff,, arccos f f J  (33) 

’ t  per atom row of the ML, where the quantities in this relation have been defined 
in eqs. (19). The energy U ,  has a maximum value of 4%f,,/77 -9W,at f =  0, 
diminishes to about 2 4 a t  the misfit f i”  = 2 / 7 ~ 4  in eq. (19) where a coherent ML 

f:” = 1 /to = 7rf;”/2 (= 14%) . (344  

* JbC” f 
(39  

becomes unstable and vanishes at 

In metals W,, - 0.2-0.5 eV. Thus above f = f ,  MD’s enter spontaneously without 
the assistance of thermal energy. In accordance with eq. (14) this defines 
(crudely) a critical thickness 

h, = 7r2h,14 - 2h, (34b) 

above which MD’s will enter spontaneously for given f <f:’). 

3.2. Nucleation of misfit dislocation loops 

The spontaneous generation of MD’s in practical cases was also considered by 
Dodson [52]. He realized that the smallness of the critical MD loop radius makes 
a continuum approach invalid and that therefore an atomistic approach is needed. 
He carried out calculations on Si considering a model system consisting of a 
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tetrahedral slab with (1 11 ) faces and periodic boundary conditions in the plane of 
the interface using a super unit  cell of 7 x 7 atoms extending to a depth of 6 
monolayers. Dodson [91] employed modified Tersoff poten Is using Monte 
Carlo techniques. He concluded that a climb MD loop of partial having a 
radius of 2 8, becomes critical (forms spontaneously) at a compressive misfit of 
11.2%. This is greater than the 4% estimated by equilibrium theories and very 
much greater than those which had been observed. Dodson suggests that perhaps 
the most significant limitation of this calculation is that i t  neglects the influence of 
existing surface steps. A feeling for the magnitude of this critical misfit may also 
be acqyired if one compares this value of 11.2% with the critical misfit f i t ’  = l/t‘,) 
( in  eq. (3Aa)) of about 14% for spontaneous generation of edge-type glide MD’s 
in the one-dimensional ML model. In any case, these calculations clearly suggest 
that considerations on the nucleation of MD’s in an otherwise perfect crystal will 
not generate satisfactory understanding of observed non-equilibrium phenomena. 

r o w d  0 8 

3.3. Overcoming the Peierls barrier 

More recently Tsao et al. [93] have extended the foregoing work on non- 
equilibrium systems and measured the strain relief in metastable Si,Ge, -, 
strained layers grown on (001) Ge substrates and concluded from their data and 
the comparison of the Peach-Koehler MS force component Fi par  parallel to the 
interface and the corresponding opposing force FD.par due to the line tension (self 
energy) of the dislocation (respectively Fi and fD of our notation in eq. (13c)) 
“that metastable strained layer breakdown is most directly correlated, not with 
thickness h and lattice mismatch f, but rather with (1) an escess stress 7,,, = 
2(Fi ,p ,r  - F,,, , , ) /hb and (2) temperature”. 

Using the expression for the Peach-Koehler force and the Volterra form of line 
tension the  authors obtained 

2?p( 1 + v) p( 1 - v cos’ a) In(4hlb) 
- ; F = f  

1 - V  27r(l- v) h/b r c x c  = (35) 

in the foreg ‘ng notation, where the angle a between the MD line and its Burgers 

Whereas the condition reXc = 0 is equivalent to F = 0 in eq. (13c) and is still 
valid for equilibrium, the energy barriers temporarily delay the transition to 
equilibrium. At a temperature of 494°C strain relief became observable when 
rexclp = 0.024. 

Scaling excess stress with the shear modulus p and temperature in Kelvin with 
the melting temperature T ,  allowed the authors to construct experimentally 
confirmed stress/temperature stability diagrams which provide a simple unified ~ 

description of the stability-metastability regimes for Si,Ge, -, strained layers. i 
Since the derivation of T ~ ~ ,  assumes the presence of threading dislocations one 

may speculate that the relevant barriers are those due to the Peierls stress 
opposing the glide motion. The net driving force (F; - FD)  which consists of the 

vector is 68 in the present case. r d  o 
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Peach-Koehler MS force diminished by the line tension is proportional to T ~ , , .  It 
reduces the  height of the Pcierls barrier 161.941. When the barrier height is 
sufficiently reduced by increased layer thickness the frequency with which the 
barrier is overcome increases to the extent that strain relief becomes observable. 
Thus the finding of the authors can be understood in terms of fluctuation 
principles. 

3.4. Overcoming the surface barrier 

Sharan and co-workers (951 also recently dealt with the.problem of the critical 
thickness-misfit dependence of GeSi alloy epilayers on (001) Si surfaces. They 
considered the inward glide on a (111) slip plane of a long straight &dislocation 
that had been nucleated “at” the surface, and calculated, using ”surface disloca- 
tion” techniques to satisfy boundary conditions, the (surface) energy barrier Us 
per unit area of interface (comprising self energy as well as work done by the MS 
stress) which it has to overcome in its passage from the free surface to the 
interface. The barrier Us has furthermore been calculated on the assumption that 
there is a sequence of MD’s of sufficient density to accommodate all the misfit (as 
expressed in terms of MD spacing). while not affecting the MS stress. The authors 
adopted the crerion that strain relief commences (the critical misfit is reached) 
when E, 2 Us, where E, is the misfit strain energy per unit  area of interface when 
f is entirely accommodated by MS. The fact that this approach yields consistently 
higher values of critical misfit than the approaches of Matthews (6.141 and others 
reflects that the present approach takes into account the opposing image force on 
dislocations when they recede from the free surface and the fact that the criterion 
E, 2 U ,  is a non-equilibrium extension of the approximate equilibrium criterion 
(15) which overestimates the critical parameters. Although the theory is not a 
true nucleation theory it  involves the  concept of an energy barrier characteristic of 
a transition from a metastable to a stable configuration. The approach also does 
not incorporate the Peierls barriers [ 14,931 thought to be important in the 
semiconducting materials concerned. 

r o d  0 

3.5. Quasi-nucleation approach 

Another critical misfit calculation that is significant and had also been controver- , 
sial is the one of People and Bean [75], who developed an analytical expression i 
for h, to account for the large discrepancy between observed values and those 1 
calculated from the expressions of Matthews (6, 141 and van der Merwe [56]. The ~ 

authors essentially assumed that the energy E, of a MD, which they simply took , 
to be of screw type [29), is very much localized within a vertical wall spanning an 
interfacial area L x w ( L  = MD line length and w = MD “width” taken as five 
[I101 spacings for Ge,Si-, alloys). They furthermore assumed that h, is reached 
when the portion of E? contained in the volume of the wall exceeds E,. This 
approach, which the authors presented as a nucleation approach but clearly is not ! 
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a true one, also contains elements of the criterion in eq. ( 1 5 ) .  The approach was 
subsequently also employed by Luryi and Suhir for finite substrates (231. In 
equilibrium approaches one finds that the critical thickness depends o n  the misfit 
to a power between - 1 and - 1.5 [57]. The effect of the fixed width of the (screw) 
dislocation is to yield a misfit dependence of the critical thickness near a power of 
-2  as in the crude approach to the result in eq. ( 2 0 ) .  and apparently yielded 
agreement with their data. In effect this approach is trading all of the MS energy 
for an almost fixed energy barrier whose value was empirically adjusted through 
the dislocation width to fit the experimental data on silicon-germanium alloys 
(761. To understand the physical details of this approach is difficult but its success 
seems to lie in picking a nearly fixed energy barrier so th.at the explicit square 
dependence of MS energy on misfit is transmitted to the expression for h,. It is a 
quasi-nucleation approach in which energies in finite volumes are compared 
rather than total energies as for equilibrium. Furthermore, it has recently been 
argued that the authors made serious flaws in the interpretation of the results [96]. 
Because of its controversiality this paper had the merit of stirring up great 
activity. 

3.6. Misfit strain gradient (MSG) 

An interesting case of critical thickness concerns epilayers on substrates of finite 
width. I t  makes use of a significant misfit strain gradient (MSG) to accommodate 
the misfit f. Luryi and Suhir adopted a rigid substrate width of 26 along the 
one-dimensional misfit direction and an epilayer of the same width to calculate 
the MS energy E? per unit  area of the interface for the case of a coherent 
interface with a strain field decaying exponentially with distance normal to the 
interface [23]. They showed that when the width is small in comparison to the 
thickness h ,  there is an effective thickness he smaller than h that characterizes the 
limit of the strain field. In other words E;  remains finite even though h becomes 
infinite. The authors defined an effective finite epilayer thickness h,  by equating 
the MSG energy E; per unit interfacial area, calculated on the basis of the stress 
distribution on the mid plane, to [€f2/(1 - v)]h,, i.e. as though there exists a 
uniform energy "density" up to a distance he from the interface, obtaining 

e P -  
1 - sech ' ) ( 1  - - r h  = h [  fi+b( ;)I' , he 

where the function is such that 

when t B h ,  { :2t'/r when t' -e h , 

and 5' = 3(1 - v ) / 2 ( 1  + v), v being Poisson's ratio. The quantity 8 ,  defined for 
f / h 4 1 ,  is obtained numerically from (36a) and (36c) and is about 0.89 for 
Ge,Si,-, alloys, so that h , / t ' - 1 / 4  in this case ( e e h ) ,  whereas h e = h  when 
(8 . .  

The authors furthermore calculated a critical thickness h: following People and 
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Bean 175) by assuming that coherency breaks down with the introduction of a M D  
when E, exceeds E,: E, and E, having the same meaning as in ref. @I. This 
yields for given f and ( the equation 

W. A .  Jessrr mid J .  H .  VOII dcr M e r w  

b t  - I n - = A [ f J I o I ’ ;  r = h f .  A =  20\%7( 1 + u )  
r b  (1  - u)b (374  

for h l ,  where b ( 5 4  A for Ge,Si , - , )  is the Burgers vector of the MD and a is the 
lattice constant. The solution of (37a) is seen to be a function of f4(Cl/,l) and 
may accordingly be written in the form 

h f u j  = h , { f w h f ~  (37b) 

with the limiting value h , { f }  when Clh: ,> 1. The factor In(h:lb) in (37a) results 
from the concept of a cut-off radius (see eqs. (11)) R = h. applicable when e 9 h .  
When 4‘ < h the authors adopted as cut-off radius R = E (=distance to lateral free 
surface) and obtained for e, the equation in (37a) with r = I,. In the limit 4‘4 h 
they accordingly obtained (using (36c)) for (37b) the result 

‘min( f) = h c {  fe’fi} . (38) 

The authors showed that the curve of h l ( f )  vs P has two asymptotes h ,  and t‘,,,,, 
and that. at E/b = em,Jh. / J : - + = ,  i.e. when f s (,,, the critical thickness is 
infinite. Equivalently this value of width, e,,,,,, represents the size limit below 
which the misfit is entirely accommodated by a MSG. It then is better described 
as a situation for which there $xists a critical misfit f, that is a function of 
C < f,,,,, 4 h. These calculations are qualitatively very significant because they 
point to a new mechanism for avoiding MD’s. They could be refined by allowing 
relaxation of the substrate and by adopting a more physically based energy 
balance analysis. For example the assumption of a uniform strain f at the interface 
when l‘ is small may not be realistic j73). 

3.7. Strain relief by crack formation 

The acquisition of MD’s by the nucleation of critical sized MD loops at typical 
temperatures has been ruled out. It is interesting though that a calculation of the 
stress intensity factor for a crack gives a critical thickness above which crack 
growth will occur as being near h,  for the nucleation of a dislocation loop. The 
experimental value for critical thickness compared to that given by the above 
calculation gave a value near h,  obtained from a balance of forces. This result 
points to the growth of pre-existing dislocations as the operative mechanism of 
coherency loss rather than the nucleation of new MD’s. There are, however, 
several epitaxial systems for which insufficient dislocation slip is available to 
accommodate the misfit and cracking occurs as an alternative [27]. To model the 
critical thickness for cracking a Griffith criterion was adopted. The critical 
thickness for cracking is equal to the critical Griffith crack length: 

. 

herack = *Y( l  - v)’ /n Ef ’ (39) 
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in which the surface free energy y of the crack has been approximated by 
y = E a , , / l O .  E being Young's modulus [S9] and a, the interatomic distance. The 
third and somcwhat extreme case, that the misfit stresses are large enough for 
cracks to form spontaneously, appears to be of less importance. Reasonable 
agreement between experiment and the relation (39) was found I271 for an 
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epilayer with a cleavage normal to the interface. Plene,( 
Crack formation of a a ifferent kind was investigated bv Hirth and Evans [78]; 

crack formation starting at the free lateral faces of a stack and propagating along 
the interface. Accepting as postulate for h,, ,cL that crack propagation proceeds 
when the driving stress due to MS exceeds the resistance K'"' to crack growth they 
obtained the value 

Using reasonable estimates for Kin' this yields values of the same order as h, for 
the introduction for MD's. 

3.8. Dynamics of strain relief 

Recently Dodson and Tsao [97] used a phenomenological model of dislocation 
dynamics and plastic flow developed tqf Haasen and co-workers [98] for diamond 
structure materials to investigate the role of strain relaxation rare in experimental 
data concernins critical thickness in semiconductors. The main features of the 
model are: ( i)  the epilayer is initially strained to coherence (MS ? = misfit f )  in a 
metastable configuration, (ii) the MS is generated as a constant biaxial deforma- 
tion relaxed by the introduction of MD network at the interface. (iii) the rate 
process mechanism is the acquisition of MD's; elongation of existins dislocations 
and the generation of new ones, (iv) a localized stress 7,0c exists that acts as a 
driving force for the motion of dislocations, while the motion is retarded by 
energy barriers needing thermal energy for overcoming them and (v) T , ~ ~  can be 
expressed in terms of the residual mismatch f- f ( r )  - i ( h ) ;  f(f) being the misfit 
accommodated at time r by the insufficient density of MD's (the plastic part) and 
C(h)  the equilibrium MS at thickness h .  The authors consider a nearly dislocation- 
free coherent layer and make provision for MD sources in terms of a background 
dislocation density fb ,  obtaining the result 

df(r)/dr = CF*[f-f(r) - C(h)12(f(r) - A ) ,  (41) 
where I-( is the shear modulus and C a constant depending on temperature. 

The authors concluded that this equation gives an excellent description of the 
data [76] for SiGe alloys on (100) Si substrates using as model parameters 
C = 30.1 and f = lo-'. The results are very insensitive to the unknown value for 
i,. For example, while the critical misfit for a 500A epilayer is 0.004, both 
theoretical and experimental values only deviate observably from coherency at 
f = 0.1. These considerations constitute significant progress towards a successful 
dynamic description of strain relief, i.e. non-equilibrium critical phenomena. 
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4 .  Correlation with experiment 

There are numerous techniques by which loss of coherency may be observed. 
Typically the experimental measurements of the critical thickness for coherency 
loss rely on observations of MD's or such indications of their presence as moire 
fringes in electron micrographs. The roles of the MV. MSG and MC mechanisms 
are usually insignificant and ignored. Further, the measurement of critical thick- 
ness and misfit is not a precise one. Nevertheless a sufficient number of meas- 
urements and estimates have been made to permit the disclosure of some trends. 
We will not consider all of the measurements reported in the literature, but rather 
deal with them in several categories. Metal islands, metal films, semiconductor 
systems and superlattices will be covered, but precipitates will be omitted. For a 
collection of data on the critical size of precipitates one may consult refs.fihnd 

There are two measurements of the critical size for loss of coherency between 
island overgrowths and their continuous substrates. For cobalt islands on copper 
substrates and y-iron on copper the respective sizes of the largest islands that 
remained coherent at 38 nm and 75 nm [13]. The corresponding calculated values 
are 36 nm and 87 nm [59]. This closeness of agreement between measured and 
calculated values is not typical and therefore may be somewhat fortuitous. 

A number of measurements of h,  have been made on thin films of nickel on 
copper substrates and Cu on Ni. Gradmann measured the critical thickness in a 
Ni/Cu vapor deposit as about 1 .0nm [9]. Similar results were obtained for 
electrodeposits of Ni on Cu 111,991. Vapor deposits of Cu on Ni showed an h,  of 
0.8nm [lOO]. The calculated values using both the energy balance and force 
balance viewpoints yield nearly equal values of near 1.2 nm. which are somewhat 
high [l-l, 591. McWhan reported on h,  measurements of 4.0 nrn for the case of a 
CulNi superlattice [ lol l .  This value for the Cu/Ni superlattice is about four times 
that for the single layer, a result in agreement with calculation [15,57]. We note 
here that the measured values are less than the calculated ones. The misfit in the 
Cu/Ni system is about 2.6%. 

Systems with larger and smaller misfits have also been studied. Thin films of 
gold on silver which have a misfit of 0.2% have been found to lose coherency 
when the overgrowth is around 28nm (101. This value agrees closely with the 
calculated value of 24nm [59].  Two large-misfit systems have been studied. The 
misfit between films of y-iron and a (111) gold substrate [lo21 is about 14% and 
the measured value of h,  is near 0.1 nm, which is too low by a factor of three. 
However, at these thicknesses the model is known to become somewhat inaccu- 
rate [59]. The Ag/Cu system with a misfit of abot 12% was studied, but instead of 
a measurement of h, ,  the elastic strains were measured as a function of film 
thickness down to a value of about 0.4 nm [103]. The deposit was not continuous 
at this thickness but the islands were over 1 Fm wide and hence approximated a 
two-dimensional overgrowth very well. Coherent growth was not observed. The 
functional dependence fit well the model of Ball (104) except for very small 
thicknesses where the van der Merwe calculation fits better [56].  The model of 
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Ball is based on a parabolic interaction potential while that of van dcr Merwe is 
based on a sinusoidal interaction potential. The agreement between the measured 
and calculated elastic strains may be taken as agreement between the critical 
thickness approach and experiment. Another way of comparing data to theory is 
to look at the calculated value of critical misfit for a continuous deposit of 
monolayer thickness. The calculation by van der Merwe [54.56] gives the 
equilibrium value of this critical misfit as about 7% for average atomic bonding. 
At this misfit the introduction of MD's still requires an activation energy which 
only vanishes at about 10% misfit depending on relative bond strengths [54]. 
From this point of view the FeiAu results that show coherency at 14%' misfit 
suggest that the adatom-substrate bonding is strong in comparison with adatom- 
adatom bonding as is implied by eqs. (19). For Ag/Cu the agreement likewise 
suggests bonding of about equal strength. There is another observation related to 
this critical misfit value. The Pd/Cu and Cu/Pd systems were found to be 
coherent in the initial stages of growth [105]. The misfit for these deposits is about 
7%, a value near the critical misfit for a monolayer and hence in agreement with 
calculation. Only fair agreement with this calculated value of critical misfit is 
obtained from antimony deposits on tungsten [106]. Here the misfit is just near 
8% and the critical thickness for loss of coherency was measured to be three 
monolayers for (100) and (211) oriented substrates. N o  coherent growth was 
observed for (1 10) oriented substrates. This is likewise consistent with weak 
bonding (smaller amplitude W,, in eq. (20)) on the smoother (110) b.c.c. tungsten 
surface. 

The trends indicated by the above comparisons between measured and calcu- 
lated values of critical thickness and critical misfit for metal systems is that the 
agreement is as good as one could expect from the crude models employed. In 
view of the lack of precision in the data and the approximations involved in the 
models, the case of metal epitaxial growth is adequately described by equilibrium 
considerations. The measured and calculated values of equilibrium elastic strain 
agree less well than critical thickness and misfit comparisons between measured 
and calculated values [14]. But even there the disagreement is not too severe. 
Significant discrepancies do occur, however, when one makes similar comparisons 
to those above but for the case of non-metals [ 14.107). The significant differences 
between the two cases can be understood in terms of the availability and mobility 
of MD's. The metal case has relatively higher values of both as compared to the 
non-metal case. 

The growth of GaAs on substrates of GaAs doped with indium showed a 
measured value of / I ,  near 0.7 pm [108]. The misfit for this system was measured 
to be 3.2 x which yields a calculated value of h, from the force balance 
equation of Matthews [ 141 of 0.59 pm. The measured value exceeds the calculated 
value by an acceptable margin in this case. Other experiments that favorably 
compare with calculated values of h, may be found in some examples of 
superlattice growth. In a superlattice of PbTe/PbSnTe where the composition of 
the PbSnTe corresponds to a misfit of 0.39% a value of h,  near 50nm was 
measured. This compares favorably to the value of near 78 nm calculated from an 
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equilibrium minimum energy balance approach 1571. A superlattice of GaAs and 
InGaAs for which a misfit of 1.9'% exists showed a measured value of h, as 18 nm 
[109]. The calculated values for this case are 25 nm from the force balance 
approach 11.51 using the Volterra model and 9 nm from the equilibrium approach 
[57], using a parabolic interaction potential. Other examples of reasonable 
agreement between measured and ca!culated hc values for superlattices could be 
quoted for nonmetals (15. 161. I t  is instructive. ho\vever, to look at those cases 
that do not fit the equilibrium calculations. 

at 570°C and of 3.6 X lo-' at room temperature and a measured value of h, of 
100nm IllO]. The calculated value using the force balance approach is 33 nm [14]. 
An order of magnitude discrepancy was found for the case of germanium 
deposited at 350°C on GaAs substrates having a misfit of 0.7% and a measured h, 
of 2 p m  11071. The authors showed that smaller values of residual strain and 
smaller h ,  values, close to the calculated values of h , ,  were observed when the 
specimens were annealed at 600°C for 30min. Similar discrepancies of the 
magnitude found for Ge on GaAs were observed in magnetic garnet [27, 1111. In 
this case the nearly dislocation-free substrates and high nucleation barrier to MD 
generation led to relaxation of the MS through cracking of the epilayer on 
cleavage planes normal to the interface [27]. 

Two further examples of non-metal layers deviating substantially from the 
calculated critical thickness \ d u e s  are provided b!. InGaAs grown on InP 
substrates 11121 and by SiGe alloys on Si substrates 1751. I n  the former case a 
number of thickness-misfit combinations were investigated for the presence or 
absence of MD's. A map of the data points was constructed from which several 
deductions can be made. The dependence of hc on misfit is very steep for both 
positive and negative misfit values. The data show some scatter, but for a 
thickness of 4 pm a critical misfit of 1.2 x lo-> is observed and for a misfit of 
2 x a critical thickness of less than 1 p n  occurs. They showed that cross 
hatch which loosely correlates with MD's can be imaged several micrometers into 
the InP substrate showing that MD's penetrate to great depths in the substrate but 
are not present in the InGaAs deposit. The above values of misfit-thickness pairs 
are not in agreement with the calculated values 'on the basis of equilibrium 
principles. the former being almost an order of magnitude greater than the 
calculated h,  values. This discrepancy coupled with the very strong dependence of 
h, on misfit suggests that the equilibrium model is not applicable to the behavior 
of this system. A similar discrepancy of an order of magnitude between the 
observed and calculated h,  values for SiGe alloys on silicon substrates also 
suggests a model based on other than equilibrium principles. 

I t  is clear from the model of People and Bean [75], and subsequent review by 
Bean I1131 as well as from the success of the incorporation of a thermally 
activated process in the model [107], that one must include the nucleation and 
mobility of MD's in an analysis of a misfit accommodation by MD's in non-metal 
systems. Cabrera was the first to recognize the importance of the barriers to MD 
acquisition [71]. It is this problem that is receiving renewed attention. The only 
true nucleation theory approaches that incorporate thermal activation for generat- 

Silicon epitaxially grown at 570°C on GaP substrates has a misfit of 4.6 X 



+IfG !is - Predrcrrori of crrrical nitsfit and thickness in eprraxj 

ing MD’s are those already mentioned I52.78.1071. Two of these approaches, 
however, have not included the effect of the mobility of dislocations once they 
have been nucleated [X. 781. A successful model must incorporate the three basic 
components, nucleation. growth and the ultimate equilibrium state being ap- 
proached. 

5. Discussion arid conc1usions 

The existence of a natural misfit f between the two crystals of an epicrystal pair 
A B  has important fundamental and technological implications. The misfit can be 
accommodated in several modes of which misfit strain (MS; e) and misfit disloca- 
tions (MD’s; j )  are the most prominent. MD’s and MS may coexist ( f==f+ 1.1) 
and knowledge of the criteria for the coherency-incoherency transition (C-IC: 
f= O + j #  0) is highly desirable. Because of continuity considerations it has been 
mathematically expedient to study the inverse transition (IC-C; f# O + f =  0). 
For a given overlayer thickness h the transition occurs at a critical misfit fc, and 
conversely, for a given misfit. at a critical thickness hc. The objectives of this 
paper were to describe (i)  the principles governing these quantities, (ii) the 
criteria adopted for determining their values and ( i i i )  the models used in the 
calculations; and also to assess (iv) the successes of (i)-(iii) as judged by their 
correlation with experiment. Clearly the processes effecting the transitions are 
given by the free-energ!, gradients towards the minimum of free energy ( A )  
defining the ultimate equilibrium. Because of its dominance in the free energy 
( A ) ,  A is usually approximated by the energ!’ E: thus effecting significant 
simplification. There exists a hierarchy of energy barriers impeding progress and 
the system may thus linger in a metastable configuration for time spans depending 
on the height U of the barrier and the thermal energy ( k T , )  available. An 
observation may accordingly find the  system in a stable or  a metastable configura- 
tion. The degree of equilibrium affects two entirely different though basic aspects: 
(i) the growth mode; ML-by-ML = 2D and islands E 3D. and (ii) the status of the 
C-IC transition. 

Because of their simplicity most calculations in the past have been carried out 
for 2D growth at equilibrium. Materials that grow 3D at equilibrium can be 
coerced by non-equilibrium conditions into growing layerlike [48,49]. This pro- 
vides some credibility for the practice of calculating critical parameters for 
systems of uniform thickness. The critical misfit and thickness obtained from 
equilibrium criteria will be denoted by f c ( h )  and hc( f) respectively, or simply by 
fc and h,.  Equilibrium theories assume the unimpeded acquisition of MD’s and 
can be analysed by either energy minimization (eqs. (13a) and (13b)) or equival- 
ently by balancing forces (eq. (13c)). The latter criterion usually assumes that 
crystal dislocations, specifically threading dislocations, are already present. Ener- 
gy minimization has often in the past been approximated by (eq. (15)) equality of 
MS energy (at =f) and MD energy (at f=f). This assumption may however, 
overestimate critical parameters by as much as 30%. 

The fundamental (thermally activated) processes affecting growth (adatom 
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diffusion) and C-IC transitions (MD nucleation and motion) are entirely differ- 
ent. The activation energy ( U )  for the latter are normally vast]!. in  excess of those 
of the former, but decrease in proportion to the layer thickness as a consequence 
of the MS induced Peach-Koehler forces. r / ( / i )  ultimately vanishes at /I,( f )  > 
h,( f). whereafter MD's are formed spontaneously. When h approaches h ,  from 
below, U becomes so small that the frequency with which the barrier is surmoun- 
ted with the aid of thermal energy is large enough for MS relief to become 
observable. Clearly the rate of equilibration for Zrowth shapes (involving adatom 
surface migration) and C-IC transitions (involving the introduction of MD's) are 
not coupled. 

Most models employed in the past are of phenomenological nature and have in 
common that they treat the crystals individually ( A - A  and B-B interactions) in 
the harmonic approximation as linear elastic isotropic continua. Mainly two 
models have been used for the A-B interactions: (i) the Volterra model (VM), 
exploited by Matthews, that assumes the relative displacement I (  of atomic planes 
on either side of the interface t be uniform and equal to b (the Burgers vector) 
and (ii) the Frenkel-KontoroJ model (FKM) that adopts an interaction which 
varies periodically in u with periodicity b and amplitude W approximately 
proportional to the AB bond strengths in contrast to the VM \\here the variation 
is ignored and u = b throughout the interfacial region between consecutive MD's. 
Clearly the FKM is more realistic. Whereas the FKM is solvable with the more 
acceptable sinusoidal variation only for a monolayer (ML) and on a thick 
substrate and for two "thick" halfcrystals. and for all thicknesses only when the 
less acceptable parabolic representation is used. the VM is applicable to all 
thicknesses and can handle imperfect MD's, partials and the ne\\. surface which is 
created in the MD acquisition process. The main shortcoming of the VM is its 
inaccuracy at very small thicknesses: its strain field representation is inadequate 
and i t  does not provide for a variable A-B bond strength which is not negligible 
at small thicknesses. 

More recently the phenomenological models have been supplemented by ab 
initio calculations using appropriate potentials. Whereas the continuum models 
have general qualitative and semiquantitative predictive po\ver the ab initio 
calculations are limited to the material combinations considered. A prerequisite 
for ab initio calculations is to find accurate interaction potentials. I t  is foreseen 
that these calculations which have more quantitative significance will generate 
new insights particularly for systems with one or more dimensions of small atomic 
order where the applicability of the continuum models is questionable. 

Experimental observations on metals are in reasonable agreement with equilib- 
rium predictions of f , ( h )  and h , ( f )  and also yield acceptable evidence of the 
influence of bond strength. specifically the A B  bond strength. The situation is 
somewhat different for strong covalently bonded semiconducting crystals. While 
some show agreement with equilibrium predictions others yield values of h' 
greatly in excess of / I , (  f). I t  is known that the mobility of dislocations is seriously 
impeded by the relatively high Peierls barriers in some of them. e.g. Si and its 
alloys. The theoretical supposition that the barrier height may be reduced by MS 



induced Peach-Koehler forces to the point where MS relief becomes observable 
in the presence of the appropriate thermal energy (kT, .  T,  = substrate tempera- 
ture), seems to be confirmed. The nucleation probability of fresh MD loops is 
practically zero in an otherwise perfect crystal, and they must come from a 
"source" of some kind when they occur. 

It may be concluded (i) that the phenomenological continuum theories have 
played a major role in understanding the physical principles underlying the 
observed critical parameters and will continue to do  so, ( i i )  that ab initio 
calculations will play an increasing role in obtaining more quantitative under- 
standing. and ( i i i )  attempts at solving the dynamics of MS relief, for which there 
is a great need, will be more frequent. 
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